Cargando…
Sieve-based coreference resolution enhances semi-supervised learning model for chemical-induced disease relation extraction
The BioCreative V chemical-disease relation (CDR) track was proposed to accelerate the progress of text mining in facilitating integrative understanding of chemicals, diseases and their relations. In this article, we describe an extension of our system (namely UET-CAM) that participated in the BioCr...
Autores principales: | Le, Hoang-Quynh, Tran, Mai-Vu, Dang, Thanh Hai, Ha, Quang-Thuy, Collier, Nigel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4962668/ https://www.ncbi.nlm.nih.gov/pubmed/27630201 http://dx.doi.org/10.1093/database/baw102 |
Ejemplares similares
-
Sieve-based coreference resolution enhances semi-supervised learning model for chemical-induced disease relation extraction
por: Le, Hoang-Quynh, et al.
Publicado: (2016) -
Learning to Recognize Phenotype Candidates in the Auto-Immune Literature Using SVM Re-Ranking
por: Collier, Nigel, et al.
Publicado: (2013) -
Improving protein coreference resolution by simple semantic classification
por: Nguyen, Ngan, et al.
Publicado: (2012) -
An Infinite Mixture Model for Coreference Resolution in Clinical Notes
por: Liu, Sijia, et al.
Publicado: (2016) -
Minimalistic Approach to Coreference Resolution in Lithuanian Medical Records
por: Žitkus, Voldemaras, et al.
Publicado: (2019)