Cargando…
Distributed Gram-Schmidt orthogonalization with simultaneous elements refinement
We present a novel distributed QR factorization algorithm for orthogonalizing a set of vectors in a decentralized wireless sensor network. The algorithm is based on the classical Gram-Schmidt orthogonalization with all projections and inner products reformulated in a recursive manner. In contrast to...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4962951/ https://www.ncbi.nlm.nih.gov/pubmed/27525005 http://dx.doi.org/10.1186/s13634-016-0322-6 |
Sumario: | We present a novel distributed QR factorization algorithm for orthogonalizing a set of vectors in a decentralized wireless sensor network. The algorithm is based on the classical Gram-Schmidt orthogonalization with all projections and inner products reformulated in a recursive manner. In contrast to existing distributed orthogonalization algorithms, all elements of the resulting matrices Q and R are computed simultaneously and refined iteratively after each transmission. Thus, the algorithm allows a trade-off between run time and accuracy. Moreover, the number of transmitted messages is considerably smaller in comparison to state-of-the-art algorithms. We thoroughly study its numerical properties and performance from various aspects. We also investigate the algorithm’s robustness to link failures and provide a comparison with existing distributed QR factorization algorithms in terms of communication cost and memory requirements. |
---|