Cargando…
Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders
Nicotinamide adenine dinucleotide (NAD(+)) is a central metabolic cofactor in eukaryotic cells that plays a critical role in regulating cellular metabolism and energy homeostasis. NAD(+) in its reduced form (i.e. NADH) serves as the primary electron donor in mitochondrial respiratory chain, which in...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4963347/ https://www.ncbi.nlm.nih.gov/pubmed/27465020 http://dx.doi.org/10.1186/s40169-016-0104-7 |
_version_ | 1782444941115392000 |
---|---|
author | Srivastava, Sarika |
author_facet | Srivastava, Sarika |
author_sort | Srivastava, Sarika |
collection | PubMed |
description | Nicotinamide adenine dinucleotide (NAD(+)) is a central metabolic cofactor in eukaryotic cells that plays a critical role in regulating cellular metabolism and energy homeostasis. NAD(+) in its reduced form (i.e. NADH) serves as the primary electron donor in mitochondrial respiratory chain, which involves adenosine triphosphate production by oxidative phosphorylation. The NAD(+)/NADH ratio also regulates the activity of various metabolic pathway enzymes such as those involved in glycolysis, Kreb’s cycle, and fatty acid oxidation. Intracellular NAD(+) is synthesized de novo from l-tryptophan, although its main source of synthesis is through salvage pathways from dietary niacin as precursors. NAD(+) is utilized by various proteins including sirtuins, poly ADP-ribose polymerases (PARPs) and cyclic ADP-ribose synthases. The NAD(+) pool is thus set by a critical balance between NAD(+) biosynthetic and NAD(+) consuming pathways. Raising cellular NAD(+) content by inducing its biosynthesis or inhibiting the activity of PARP and cADP-ribose synthases via genetic or pharmacological means lead to sirtuins activation. Sirtuins modulate distinct metabolic, energetic and stress response pathways, and through their activation, NAD(+) directly links the cellular redox state with signaling and transcriptional events. NAD(+) levels decline with mitochondrial dysfunction and reduced NAD(+)/NADH ratio is implicated in mitochondrial disorders, various age-related pathologies as well as during aging. Here, I will provide an overview of the current knowledge on NAD(+) metabolism including its biosynthesis, utilization, compartmentalization and role in the regulation of metabolic homoeostasis. I will further discuss how augmenting intracellular NAD(+) content increases oxidative metabolism to prevent bioenergetic and functional decline in multiple models of mitochondrial diseases and age-related disorders, and how this knowledge could be translated to the clinic for human relevance. |
format | Online Article Text |
id | pubmed-4963347 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-49633472016-08-10 Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders Srivastava, Sarika Clin Transl Med Review Nicotinamide adenine dinucleotide (NAD(+)) is a central metabolic cofactor in eukaryotic cells that plays a critical role in regulating cellular metabolism and energy homeostasis. NAD(+) in its reduced form (i.e. NADH) serves as the primary electron donor in mitochondrial respiratory chain, which involves adenosine triphosphate production by oxidative phosphorylation. The NAD(+)/NADH ratio also regulates the activity of various metabolic pathway enzymes such as those involved in glycolysis, Kreb’s cycle, and fatty acid oxidation. Intracellular NAD(+) is synthesized de novo from l-tryptophan, although its main source of synthesis is through salvage pathways from dietary niacin as precursors. NAD(+) is utilized by various proteins including sirtuins, poly ADP-ribose polymerases (PARPs) and cyclic ADP-ribose synthases. The NAD(+) pool is thus set by a critical balance between NAD(+) biosynthetic and NAD(+) consuming pathways. Raising cellular NAD(+) content by inducing its biosynthesis or inhibiting the activity of PARP and cADP-ribose synthases via genetic or pharmacological means lead to sirtuins activation. Sirtuins modulate distinct metabolic, energetic and stress response pathways, and through their activation, NAD(+) directly links the cellular redox state with signaling and transcriptional events. NAD(+) levels decline with mitochondrial dysfunction and reduced NAD(+)/NADH ratio is implicated in mitochondrial disorders, various age-related pathologies as well as during aging. Here, I will provide an overview of the current knowledge on NAD(+) metabolism including its biosynthesis, utilization, compartmentalization and role in the regulation of metabolic homoeostasis. I will further discuss how augmenting intracellular NAD(+) content increases oxidative metabolism to prevent bioenergetic and functional decline in multiple models of mitochondrial diseases and age-related disorders, and how this knowledge could be translated to the clinic for human relevance. Springer Berlin Heidelberg 2016-07-27 /pmc/articles/PMC4963347/ /pubmed/27465020 http://dx.doi.org/10.1186/s40169-016-0104-7 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Review Srivastava, Sarika Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders |
title | Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders |
title_full | Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders |
title_fullStr | Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders |
title_full_unstemmed | Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders |
title_short | Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders |
title_sort | emerging therapeutic roles for nad(+) metabolism in mitochondrial and age-related disorders |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4963347/ https://www.ncbi.nlm.nih.gov/pubmed/27465020 http://dx.doi.org/10.1186/s40169-016-0104-7 |
work_keys_str_mv | AT srivastavasarika emergingtherapeuticrolesfornadmetabolisminmitochondrialandagerelateddisorders |