Cargando…
A genetic cell context-dependent role for ZEB1 in lung cancer
The Zinc-finger E-box-binding Homeobox-1 (ZEB1) is a transcription factor that promotes epithelial–mesenchymal transition (EMT) and acts as an oncogene in KRAS-mutated lung cancer models. Here we report that ZEB1 exerts the opposite effect in EGFR-mutated lung cancer cells, where it suppresses growt...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4963474/ https://www.ncbi.nlm.nih.gov/pubmed/27456471 http://dx.doi.org/10.1038/ncomms12231 |
Sumario: | The Zinc-finger E-box-binding Homeobox-1 (ZEB1) is a transcription factor that promotes epithelial–mesenchymal transition (EMT) and acts as an oncogene in KRAS-mutated lung cancer models. Here we report that ZEB1 exerts the opposite effect in EGFR-mutated lung cancer cells, where it suppresses growth by increasing microRNA-200 targets to antagonize ERBB3, a driver of mutant EGFR-dependent cell growth. Among these targets, NOTCH1 represses ERBB3 promoter activity and the expression of ERBB3. Furthermore, we find that EGFR inhibitor treatment, which inhibits the growth of EGFR-mutated cells, induces ZEB1. Despite its growth-inhibiting effect, EGFR inhibitor-induced ZEB1 strongly promotes EMT-dependent resistance to EGFR inhibitors partially through NOTCH1, suggesting a multifunctional role for NOTCH1 in EGFR-mutated cells. These results support a previously unrecognized genetic cell context-dependent role for ZEB1 and suggest that NOTCH1 may be a useful target for treating resistance to EGFR inhibitors, especially EMT-driven resistance. |
---|