Cargando…

Energetic Assessment of the Nonexercise Activities under Free-Living Conditions

Nonexercise activities (NAs) are common types of physical activity in daily life and critical component in energy expenditure. However, energetic assessment of NA, particularly in free-living subjects, is a technical challenge. In this study, mechanical modeling and portable device were used to eval...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Shijie, Tang, Qiang, Quan, Haiying, Lu, Qi, Sun, Ming, Zhang, Kuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4963594/
https://www.ncbi.nlm.nih.gov/pubmed/27493966
http://dx.doi.org/10.1155/2016/8465976
Descripción
Sumario:Nonexercise activities (NAs) are common types of physical activity in daily life and critical component in energy expenditure. However, energetic assessment of NA, particularly in free-living subjects, is a technical challenge. In this study, mechanical modeling and portable device were used to evaluate five common types of NA in daily life: sit to stand, lie to sit, bowing while standing, squat, and right leg over left. A human indirect calorimeter was used to measure the activity energy expenditure of NA. Mechanical work and mechanical efficiency of NA were calculated for mechanical modeling. Thirty-two male subjects were recruited for the study (20 subjects for the development of models and 12 subjects for evaluation of models). The average (mean ± SD) mechanical work of 5 NAs was 2.31 ± 0.50, 2.88 ± 0.57, 1.75 ± 0.55, 3.96 ± 1.25, and 1.25 ± 0.51 J/kg·m, respectively. The mean mechanical efficiencies of those activities were 22.0 ± 3.3%, 26.5 ± 5.1%, 19.8 ± 3.7%, 24.0 ± 5.5%, and 26.3 ± 5.5%. The activity energy expenditure estimated by the models was not significantly different from the measurements by the calorimeter (p > 0.05) with accuracies of 102.2 ± 20.7%, 103.7 ± 25.8%, 105.6 ± 14.6%, 101.1 ± 28.0%, and 95.8 ± 20.7%, respectively, for those activities. These findings suggest that the mechanical models combined with a portable device can provide an alternative method for the energetic analysis of nonexercise activities under free-living condition.