Cargando…
Machine Learning Approach to Automated Quality Identification of Human Induced Pluripotent Stem Cell Colony Images
The focus of this research is on automated identification of the quality of human induced pluripotent stem cell (iPSC) colony images. iPS cell technology is a contemporary method by which the patient's cells are reprogrammed back to stem cells and are differentiated to any cell type wanted. iPS...
Autores principales: | Joutsijoki, Henry, Haponen, Markus, Rasku, Jyrki, Aalto-Setälä, Katriina, Juhola, Martti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4963598/ https://www.ncbi.nlm.nih.gov/pubmed/27493680 http://dx.doi.org/10.1155/2016/3091039 |
Ejemplares similares
-
Error-Correcting Output Codes in Classification of Human Induced Pluripotent Stem Cell Colony Images
por: Joutsijoki, Henry, et al.
Publicado: (2016) -
Analysis of Drug Effects on iPSC Cardiomyocytes with Machine Learning
por: Juhola, Martti, et al.
Publicado: (2020) -
Detection of genetic cardiac diseases by Ca(2+) transient profiles using machine learning methods
por: Juhola, Martti, et al.
Publicado: (2018) -
Novel Analysis Software for Detecting and Classifying Ca(2+) Transient Abnormalities in Stem Cell-Derived Cardiomyocytes
por: Penttinen, Kirsi, et al.
Publicado: (2015) -
Cardiac Differentiation of Pluripotent Stem Cells
por: Rajala, Kristiina, et al.
Publicado: (2011)