Cargando…
Two new methods to fit models for network meta-analysis with random inconsistency effects
BACKGROUND: Meta-analysis is a valuable tool for combining evidence from multiple studies. Network meta-analysis is becoming more widely used as a means to compare multiple treatments in the same analysis. However, a network meta-analysis may exhibit inconsistency, whereby the treatment effect estim...
Autores principales: | Law, Martin, Jackson, Dan, Turner, Rebecca, Rhodes, Kirsty, Viechtbauer, Wolfgang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964019/ https://www.ncbi.nlm.nih.gov/pubmed/27465416 http://dx.doi.org/10.1186/s12874-016-0184-5 |
Ejemplares similares
-
Methods for calculating confidence and credible intervals for the residual between-study variance in random effects meta-regression models
por: Jackson, Dan, et al.
Publicado: (2014) -
Extending DerSimonian and Laird's methodology to perform network meta‐analyses with random inconsistency effects
por: Jackson, Dan, et al.
Publicado: (2016) -
Paule‐Mandel estimators for network meta‐analysis with random inconsistency effects
por: Jackson, Dan, et al.
Publicado: (2017) -
Empirical evidence about inconsistency among studies in a pair‐wise meta‐analysis
por: Rhodes, Kirsty M., et al.
Publicado: (2015) -
A comparison of seven random‐effects models for meta‐analyses that estimate the summary odds ratio
por: Jackson, Dan, et al.
Publicado: (2018)