Cargando…
Enhanced production of polyhydroxybutyrate by multiple dividing E. coli
BACKGROUND: Most bacteria are grown in a binary fission way meaning a bacterial cell is equally divided into two. Polyhydroxyalkanoates (PHA) can be accumulated as inclusion bodies by bacteria. The cell division way and morphology have been shown to play an important role in regulating the bacterial...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964105/ https://www.ncbi.nlm.nih.gov/pubmed/27465264 http://dx.doi.org/10.1186/s12934-016-0531-6 |
_version_ | 1782445047517544448 |
---|---|
author | Wu, Hong Fan, Zhongyun Jiang, Xiaoran Chen, Jinchun Chen, Guo-Qiang |
author_facet | Wu, Hong Fan, Zhongyun Jiang, Xiaoran Chen, Jinchun Chen, Guo-Qiang |
author_sort | Wu, Hong |
collection | PubMed |
description | BACKGROUND: Most bacteria are grown in a binary fission way meaning a bacterial cell is equally divided into two. Polyhydroxyalkanoates (PHA) can be accumulated as inclusion bodies by bacteria. The cell division way and morphology have been shown to play an important role in regulating the bacterial growth and PHA storages. RESULTS: The common growth pattern of Escherichia coli was changed to multiple fission patterns by deleting fission related genes minC and minD together, allowing the formation of multiple fission rings (Z-rings) in several positions of an elongated cell, thus a bacterial cell was observed to be divided into more than two daughter cells at same time. To further improve cell growth and PHA production, some genes related with division process including ftsQ, ftsL, ftsW, ftsN and ftsZ, together with the cell shape control gene mreB, were all overexpressed in E. coli JM109 ∆minCD. The changing pattern of E. coli cell growth and morphology resulted in more cell dry weights (CDW) and more than 80 % polyhydroxybutyrate (PHB) accumulation increases compared to its binary fission control grown under the same conditions. CONCLUSIONS: This study clearly demonstrated that combined over-expression genes ftsQ, ftsW, ftsN, ftsL and ftsZ together with shape control gene mreB in multiple division bacterial E. coli JM109 ∆minCD benefited PHA accumulation. Our study provides useful information on increasing the yield of PHA by changing the cell division pattern and cell morphology of E. coli. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-016-0531-6) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4964105 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-49641052016-07-29 Enhanced production of polyhydroxybutyrate by multiple dividing E. coli Wu, Hong Fan, Zhongyun Jiang, Xiaoran Chen, Jinchun Chen, Guo-Qiang Microb Cell Fact Research BACKGROUND: Most bacteria are grown in a binary fission way meaning a bacterial cell is equally divided into two. Polyhydroxyalkanoates (PHA) can be accumulated as inclusion bodies by bacteria. The cell division way and morphology have been shown to play an important role in regulating the bacterial growth and PHA storages. RESULTS: The common growth pattern of Escherichia coli was changed to multiple fission patterns by deleting fission related genes minC and minD together, allowing the formation of multiple fission rings (Z-rings) in several positions of an elongated cell, thus a bacterial cell was observed to be divided into more than two daughter cells at same time. To further improve cell growth and PHA production, some genes related with division process including ftsQ, ftsL, ftsW, ftsN and ftsZ, together with the cell shape control gene mreB, were all overexpressed in E. coli JM109 ∆minCD. The changing pattern of E. coli cell growth and morphology resulted in more cell dry weights (CDW) and more than 80 % polyhydroxybutyrate (PHB) accumulation increases compared to its binary fission control grown under the same conditions. CONCLUSIONS: This study clearly demonstrated that combined over-expression genes ftsQ, ftsW, ftsN, ftsL and ftsZ together with shape control gene mreB in multiple division bacterial E. coli JM109 ∆minCD benefited PHA accumulation. Our study provides useful information on increasing the yield of PHA by changing the cell division pattern and cell morphology of E. coli. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-016-0531-6) contains supplementary material, which is available to authorized users. BioMed Central 2016-07-27 /pmc/articles/PMC4964105/ /pubmed/27465264 http://dx.doi.org/10.1186/s12934-016-0531-6 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Wu, Hong Fan, Zhongyun Jiang, Xiaoran Chen, Jinchun Chen, Guo-Qiang Enhanced production of polyhydroxybutyrate by multiple dividing E. coli |
title | Enhanced production of polyhydroxybutyrate by multiple dividing E. coli |
title_full | Enhanced production of polyhydroxybutyrate by multiple dividing E. coli |
title_fullStr | Enhanced production of polyhydroxybutyrate by multiple dividing E. coli |
title_full_unstemmed | Enhanced production of polyhydroxybutyrate by multiple dividing E. coli |
title_short | Enhanced production of polyhydroxybutyrate by multiple dividing E. coli |
title_sort | enhanced production of polyhydroxybutyrate by multiple dividing e. coli |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964105/ https://www.ncbi.nlm.nih.gov/pubmed/27465264 http://dx.doi.org/10.1186/s12934-016-0531-6 |
work_keys_str_mv | AT wuhong enhancedproductionofpolyhydroxybutyratebymultipledividingecoli AT fanzhongyun enhancedproductionofpolyhydroxybutyratebymultipledividingecoli AT jiangxiaoran enhancedproductionofpolyhydroxybutyratebymultipledividingecoli AT chenjinchun enhancedproductionofpolyhydroxybutyratebymultipledividingecoli AT chenguoqiang enhancedproductionofpolyhydroxybutyratebymultipledividingecoli |