Cargando…

iTRAQ-based proteomic profiling reveals different protein expression between normal skin and hypertrophic scar tissue

BACKGROUND: A hypertrophic scar is a unique fibrotic disease that only exists in humans. Despite advances in burn care and rehabilitation, as well as progress in the management during these decades, the hypertrophic scar remains hard to cure following surgical methods and drugs for treatment. In thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Jianglin, He, Weifeng, Luo, Gaoxing, Wu, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964291/
https://www.ncbi.nlm.nih.gov/pubmed/27574659
http://dx.doi.org/10.1186/s41038-015-0016-6
Descripción
Sumario:BACKGROUND: A hypertrophic scar is a unique fibrotic disease that only exists in humans. Despite advances in burn care and rehabilitation, as well as progress in the management during these decades, the hypertrophic scar remains hard to cure following surgical methods and drugs for treatment. In this study, we are looking forward to finding the multitude of possible traumatic mechanisms and the underlying molecular signal ways in the formation of the hypertrophic scar. METHODS: We used isobaric tags for relative and absolute quantitation (iTRAQ) labeling technology, followed by high-throughput 2D LC-MS/MS, to determine relative quantitative differential proteins between the hypertrophic scar and normal skin tissue. RESULTS: A total of 3166 proteins were identified with a high confidence (≥95 % confidence). And, a total of 89 proteins were identified as the differential proteins between the hypertrophic scar and normal skin, among which 41 proteins were up-regulated and 48 proteins were down-regulated in the hypertrophic scar. GO-Analysis indicated the up-regulated proteins were involved in extracellular matrix, whereas the down-regulated proteins were involved in dynamic junction and structural molecule activity. CONCLUSIONS: In our study, we demonstrate 89 proteins present differently in the hypertrophic scar compared to normal skin by iTRAQ technology, which might indicate the pathologic process of hypertrophic scar formation and guide us to propose new strategies against the hypertrophic scar.