Cargando…
Bootstrap Enhanced Penalized Regression for Variable Selection with Neuroimaging Data
Recent advances in fMRI research highlight the use of multivariate methods for examining whole-brain connectivity. Complementary data-driven methods are needed for determining the subset of predictors related to individual differences. Although commonly used for this purpose, ordinary least squares...
Autores principales: | Abram, Samantha V., Helwig, Nathaniel E., Moodie, Craig A., DeYoung, Colin G., MacDonald, Angus W., Waller, Niels G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964314/ https://www.ncbi.nlm.nih.gov/pubmed/27516732 http://dx.doi.org/10.3389/fnins.2016.00344 |
Ejemplares similares
-
Bootstrap-based inferential improvements to the simplex nonlinear regression model
por: Silva, Alisson de Oliveira, et al.
Publicado: (2022) -
Learning From Loss After Risk: Dissociating Reward Pursuit and Reward Valuation in a Naturalistic Foraging Task
por: Abram, Samantha V., et al.
Publicado: (2019) -
Robust model selection using the out-of-bag bootstrap in linear regression
por: Rabbi, Fazli, et al.
Publicado: (2022) -
Accounting for grouped predictor variables or pathways in high-dimensional penalized Cox regression models
por: Belhechmi, Shaima, et al.
Publicado: (2020) -
Bayesian Rician Regression for Neuroimaging
por: Wegmann, Bertil, et al.
Publicado: (2017)