Cargando…

Growth of epitaxial silicon nanowires on a Si substrate by a metal-catalyst-free process

The growth of epitaxial Si nanowires by a metal-catalyst-free process has been investigated as an alternative to the more common metal-catalyzed vapor–liquid–solid process. The well-aligned Si nanowires are successfully grown on a (111)-oriented Si substrate without any metal catalysts by a thermal...

Descripción completa

Detalles Bibliográficos
Autores principales: Ishiyama, Takeshi, Nakagawa, Shuhei, Wakamatsu, Toshiki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964331/
https://www.ncbi.nlm.nih.gov/pubmed/27465800
http://dx.doi.org/10.1038/srep30608
Descripción
Sumario:The growth of epitaxial Si nanowires by a metal-catalyst-free process has been investigated as an alternative to the more common metal-catalyzed vapor–liquid–solid process. The well-aligned Si nanowires are successfully grown on a (111)-oriented Si substrate without any metal catalysts by a thermal treatment using silicon sulfide as a Si source at approximately 1200 °C. The needle-shaped Si nanowires, which have a core–shell structure that consists of a single-crystalline Si core along the <111> direction consistent with the substrate direction and a surface coating of silicon oxide, are grown by a metal-catalyst-free process. In this process, the silicon sulfide in the liquid phase facilitates the nucleation and nanowire growth. In contrast, oxygen-rich nanowires that consist of crystalline Si at the tip and lumpy silicon oxide on the body are observed in a sample grown at 1300 °C, which disturbs the epitaxial growth of Si nanowires.