Cargando…

miR-494-3p Induces Cellular Senescence and Enhances Radiosensitivity in Human Oral Squamous Carcinoma Cells

Oral squamous cell carcinoma (OSCC) is the most common malignancy of head and neck. Although radiotherapy is used for OSCC treatment, the occurrence of radioresistant cancer cells limits its efficiency. MicroRNAs (miRNAs) are non-coding RNAs with lengths of 18–25 base pairs and known to be involved...

Descripción completa

Detalles Bibliográficos
Autores principales: Weng, Jui-Hung, Yu, Cheng-Chia, Lee, Yueh-Chun, Lin, Cheng-Wei, Chang, Wen-Wei, Kuo, Yu-Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964468/
https://www.ncbi.nlm.nih.gov/pubmed/27399693
http://dx.doi.org/10.3390/ijms17071092
Descripción
Sumario:Oral squamous cell carcinoma (OSCC) is the most common malignancy of head and neck. Although radiotherapy is used for OSCC treatment, the occurrence of radioresistant cancer cells limits its efficiency. MicroRNAs (miRNAs) are non-coding RNAs with lengths of 18–25 base pairs and known to be involved in carcinogenesis. We previously demonstrated that by targeting B lymphoma Mo-MLV insertion region 1 homolog (Bmi1), miR-494-3p functions as a putative tumor suppressor miRNA in OSCC. In this study, we further discovered that miR-494-3p could enhance the radiosensitivity of SAS OSCC cells and induce cellular senescence. The overexpression of miR-494-3p in SAS cells increased the population of senescence-associated β-galactosidase positive cells, the expression of p16(INK4a) and retinoblastoma 1 (RB1), as well as downregulated Bmi1. The knockdown of Bmi1 by lentiviral-mediated delivery of specific short hairpin RNAs (shRNAs) also enhanced the radiosensitivity of SAS cells and the activation of the senescence pathway. Furthermore, the inverse correlation between Bmi1 and miR-494-3p expression was observed among OSCC tissues. Results suggest that miR-494-3p could increase the radiosensitivity of OSCC cells through the induction of cellular senescence caused by the downregulation of Bmi1.