Cargando…
Bacteria-Templated NiO Nanoparticles/Microstructure for an Enzymeless Glucose Sensor
The bacterial-induced hollow cylinder NiO (HCNiO) nanomaterial was utilized for the enzymeless (without GOx) detection of glucose in basic conditions. The determination of glucose in 0.05 M NaOH solution with high sensitivity was performed using cyclic voltammetry (CV) and amperometry (i–t). The fun...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964480/ https://www.ncbi.nlm.nih.gov/pubmed/27409615 http://dx.doi.org/10.3390/ijms17071104 |
_version_ | 1782445119953174528 |
---|---|
author | Vaidyanathan, Settu Cherng, Jong-Yuh Sun, An-Cheng Chen, Chien-Yen |
author_facet | Vaidyanathan, Settu Cherng, Jong-Yuh Sun, An-Cheng Chen, Chien-Yen |
author_sort | Vaidyanathan, Settu |
collection | PubMed |
description | The bacterial-induced hollow cylinder NiO (HCNiO) nanomaterial was utilized for the enzymeless (without GOx) detection of glucose in basic conditions. The determination of glucose in 0.05 M NaOH solution with high sensitivity was performed using cyclic voltammetry (CV) and amperometry (i–t). The fundamental electrochemical parameters were analyzed and the obtained values of diffusion coefficient (D), heterogeneous rate constant (k(s)), electroactive surface coverage (Г), and transfer coefficient (alpha-α) are 1.75 × 10(−6) cm(2)/s, 57.65 M(−1)·s(−1), 1.45 × 10(−10) mol/cm(2), and 0.52 respectively. The peak current of the i–t method shows two dynamic linear ranges of calibration curves 0.2 to 3.5 µM and 0.5 to 250 µM for the glucose electro-oxidation. The Ni(2+)/Ni(3+) couple with the HCNiO electrode and the electrocatalytic properties were found to be sensitive to the glucose oxidation. The green chemistry of NiO preparation from bacteria and the high catalytic ability of the oxyhydroxide (NiOOH) is the good choice for the development of a glucose sensor. The best obtained sensitivity and limit of detection (LOD) for this sensor were 3978.9 µA mM(−1)·cm(−2) and 0.9 µM, respectively. |
format | Online Article Text |
id | pubmed-4964480 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-49644802016-08-03 Bacteria-Templated NiO Nanoparticles/Microstructure for an Enzymeless Glucose Sensor Vaidyanathan, Settu Cherng, Jong-Yuh Sun, An-Cheng Chen, Chien-Yen Int J Mol Sci Article The bacterial-induced hollow cylinder NiO (HCNiO) nanomaterial was utilized for the enzymeless (without GOx) detection of glucose in basic conditions. The determination of glucose in 0.05 M NaOH solution with high sensitivity was performed using cyclic voltammetry (CV) and amperometry (i–t). The fundamental electrochemical parameters were analyzed and the obtained values of diffusion coefficient (D), heterogeneous rate constant (k(s)), electroactive surface coverage (Г), and transfer coefficient (alpha-α) are 1.75 × 10(−6) cm(2)/s, 57.65 M(−1)·s(−1), 1.45 × 10(−10) mol/cm(2), and 0.52 respectively. The peak current of the i–t method shows two dynamic linear ranges of calibration curves 0.2 to 3.5 µM and 0.5 to 250 µM for the glucose electro-oxidation. The Ni(2+)/Ni(3+) couple with the HCNiO electrode and the electrocatalytic properties were found to be sensitive to the glucose oxidation. The green chemistry of NiO preparation from bacteria and the high catalytic ability of the oxyhydroxide (NiOOH) is the good choice for the development of a glucose sensor. The best obtained sensitivity and limit of detection (LOD) for this sensor were 3978.9 µA mM(−1)·cm(−2) and 0.9 µM, respectively. MDPI 2016-07-11 /pmc/articles/PMC4964480/ /pubmed/27409615 http://dx.doi.org/10.3390/ijms17071104 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vaidyanathan, Settu Cherng, Jong-Yuh Sun, An-Cheng Chen, Chien-Yen Bacteria-Templated NiO Nanoparticles/Microstructure for an Enzymeless Glucose Sensor |
title | Bacteria-Templated NiO Nanoparticles/Microstructure for an Enzymeless Glucose Sensor |
title_full | Bacteria-Templated NiO Nanoparticles/Microstructure for an Enzymeless Glucose Sensor |
title_fullStr | Bacteria-Templated NiO Nanoparticles/Microstructure for an Enzymeless Glucose Sensor |
title_full_unstemmed | Bacteria-Templated NiO Nanoparticles/Microstructure for an Enzymeless Glucose Sensor |
title_short | Bacteria-Templated NiO Nanoparticles/Microstructure for an Enzymeless Glucose Sensor |
title_sort | bacteria-templated nio nanoparticles/microstructure for an enzymeless glucose sensor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964480/ https://www.ncbi.nlm.nih.gov/pubmed/27409615 http://dx.doi.org/10.3390/ijms17071104 |
work_keys_str_mv | AT vaidyanathansettu bacteriatemplatednionanoparticlesmicrostructureforanenzymelessglucosesensor AT cherngjongyuh bacteriatemplatednionanoparticlesmicrostructureforanenzymelessglucosesensor AT sunancheng bacteriatemplatednionanoparticlesmicrostructureforanenzymelessglucosesensor AT chenchienyen bacteriatemplatednionanoparticlesmicrostructureforanenzymelessglucosesensor |