Cargando…
A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO(2)Nanowires for Superior Photocatalytic Performance
Nanostructured hybrid heterojunctions have been studied widely for photocatalytic applications due to their superior optical and structural properties. In this work, the impact of angstrom thick atomic layer deposited (ALD) ZnO shell layer on photocatalytic activity (PCA) of hydrothermal grown singl...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964577/ https://www.ncbi.nlm.nih.gov/pubmed/27464476 http://dx.doi.org/10.1038/srep30587 |
_version_ | 1782445142025699328 |
---|---|
author | Ghobadi, Amir Ulusoy, T. Gamze Garifullin, Ruslan Guler, Mustafa O. Okyay, Ali K. |
author_facet | Ghobadi, Amir Ulusoy, T. Gamze Garifullin, Ruslan Guler, Mustafa O. Okyay, Ali K. |
author_sort | Ghobadi, Amir |
collection | PubMed |
description | Nanostructured hybrid heterojunctions have been studied widely for photocatalytic applications due to their superior optical and structural properties. In this work, the impact of angstrom thick atomic layer deposited (ALD) ZnO shell layer on photocatalytic activity (PCA) of hydrothermal grown single crystalline TiO(2) nanowires (NWs) is systematically explored. We showed that a single cycle of ALD ZnO layer wrapped around TiO(2) NWs, considerably boosts the PCA of the heterostructure. Subsequent cycles, however, gradually hinder the photocatalytic activity (PCA) of the TiO(2) NWs. Various structural, optical, and transient characterizations are employed to scrutinize this unprecedented change. We show that a single atomic layer of ZnO shell not only increases light harvesting capability of the heterostructure via extension of the absorption toward visible wavelengths, but also mitigates recombination probability of carriers through reduction of surface defects density and introduction of proper charge separation along the core-shell interface. Furthermore, the ultrathin ZnO shell layer allows a strong contribution of the core (TiO(2)) valence band holes through tunneling across the ultrathin interface. All mechanisms responsible for this enhanced PCA of heterostructure are elucidated and corresponding models are proposed. |
format | Online Article Text |
id | pubmed-4964577 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-49645772016-08-08 A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO(2)Nanowires for Superior Photocatalytic Performance Ghobadi, Amir Ulusoy, T. Gamze Garifullin, Ruslan Guler, Mustafa O. Okyay, Ali K. Sci Rep Article Nanostructured hybrid heterojunctions have been studied widely for photocatalytic applications due to their superior optical and structural properties. In this work, the impact of angstrom thick atomic layer deposited (ALD) ZnO shell layer on photocatalytic activity (PCA) of hydrothermal grown single crystalline TiO(2) nanowires (NWs) is systematically explored. We showed that a single cycle of ALD ZnO layer wrapped around TiO(2) NWs, considerably boosts the PCA of the heterostructure. Subsequent cycles, however, gradually hinder the photocatalytic activity (PCA) of the TiO(2) NWs. Various structural, optical, and transient characterizations are employed to scrutinize this unprecedented change. We show that a single atomic layer of ZnO shell not only increases light harvesting capability of the heterostructure via extension of the absorption toward visible wavelengths, but also mitigates recombination probability of carriers through reduction of surface defects density and introduction of proper charge separation along the core-shell interface. Furthermore, the ultrathin ZnO shell layer allows a strong contribution of the core (TiO(2)) valence band holes through tunneling across the ultrathin interface. All mechanisms responsible for this enhanced PCA of heterostructure are elucidated and corresponding models are proposed. Nature Publishing Group 2016-07-28 /pmc/articles/PMC4964577/ /pubmed/27464476 http://dx.doi.org/10.1038/srep30587 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Ghobadi, Amir Ulusoy, T. Gamze Garifullin, Ruslan Guler, Mustafa O. Okyay, Ali K. A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO(2)Nanowires for Superior Photocatalytic Performance |
title | A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO(2)Nanowires for Superior Photocatalytic Performance |
title_full | A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO(2)Nanowires for Superior Photocatalytic Performance |
title_fullStr | A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO(2)Nanowires for Superior Photocatalytic Performance |
title_full_unstemmed | A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO(2)Nanowires for Superior Photocatalytic Performance |
title_short | A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO(2)Nanowires for Superior Photocatalytic Performance |
title_sort | heterojunction design of single layer hole tunneling zno passivation wrapping around tio(2)nanowires for superior photocatalytic performance |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964577/ https://www.ncbi.nlm.nih.gov/pubmed/27464476 http://dx.doi.org/10.1038/srep30587 |
work_keys_str_mv | AT ghobadiamir aheterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance AT ulusoytgamze aheterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance AT garifullinruslan aheterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance AT gulermustafao aheterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance AT okyayalik aheterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance AT ghobadiamir heterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance AT ulusoytgamze heterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance AT garifullinruslan heterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance AT gulermustafao heterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance AT okyayalik heterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance |