Cargando…

A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO(2)Nanowires for Superior Photocatalytic Performance

Nanostructured hybrid heterojunctions have been studied widely for photocatalytic applications due to their superior optical and structural properties. In this work, the impact of angstrom thick atomic layer deposited (ALD) ZnO shell layer on photocatalytic activity (PCA) of hydrothermal grown singl...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghobadi, Amir, Ulusoy, T. Gamze, Garifullin, Ruslan, Guler, Mustafa O., Okyay, Ali K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964577/
https://www.ncbi.nlm.nih.gov/pubmed/27464476
http://dx.doi.org/10.1038/srep30587
_version_ 1782445142025699328
author Ghobadi, Amir
Ulusoy, T. Gamze
Garifullin, Ruslan
Guler, Mustafa O.
Okyay, Ali K.
author_facet Ghobadi, Amir
Ulusoy, T. Gamze
Garifullin, Ruslan
Guler, Mustafa O.
Okyay, Ali K.
author_sort Ghobadi, Amir
collection PubMed
description Nanostructured hybrid heterojunctions have been studied widely for photocatalytic applications due to their superior optical and structural properties. In this work, the impact of angstrom thick atomic layer deposited (ALD) ZnO shell layer on photocatalytic activity (PCA) of hydrothermal grown single crystalline TiO(2) nanowires (NWs) is systematically explored. We showed that a single cycle of ALD ZnO layer wrapped around TiO(2) NWs, considerably boosts the PCA of the heterostructure. Subsequent cycles, however, gradually hinder the photocatalytic activity (PCA) of the TiO(2) NWs. Various structural, optical, and transient characterizations are employed to scrutinize this unprecedented change. We show that a single atomic layer of ZnO shell not only increases light harvesting capability of the heterostructure via extension of the absorption toward visible wavelengths, but also mitigates recombination probability of carriers through reduction of surface defects density and introduction of proper charge separation along the core-shell interface. Furthermore, the ultrathin ZnO shell layer allows a strong contribution of the core (TiO(2)) valence band holes through tunneling across the ultrathin interface. All mechanisms responsible for this enhanced PCA of heterostructure are elucidated and corresponding models are proposed.
format Online
Article
Text
id pubmed-4964577
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49645772016-08-08 A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO(2)Nanowires for Superior Photocatalytic Performance Ghobadi, Amir Ulusoy, T. Gamze Garifullin, Ruslan Guler, Mustafa O. Okyay, Ali K. Sci Rep Article Nanostructured hybrid heterojunctions have been studied widely for photocatalytic applications due to their superior optical and structural properties. In this work, the impact of angstrom thick atomic layer deposited (ALD) ZnO shell layer on photocatalytic activity (PCA) of hydrothermal grown single crystalline TiO(2) nanowires (NWs) is systematically explored. We showed that a single cycle of ALD ZnO layer wrapped around TiO(2) NWs, considerably boosts the PCA of the heterostructure. Subsequent cycles, however, gradually hinder the photocatalytic activity (PCA) of the TiO(2) NWs. Various structural, optical, and transient characterizations are employed to scrutinize this unprecedented change. We show that a single atomic layer of ZnO shell not only increases light harvesting capability of the heterostructure via extension of the absorption toward visible wavelengths, but also mitigates recombination probability of carriers through reduction of surface defects density and introduction of proper charge separation along the core-shell interface. Furthermore, the ultrathin ZnO shell layer allows a strong contribution of the core (TiO(2)) valence band holes through tunneling across the ultrathin interface. All mechanisms responsible for this enhanced PCA of heterostructure are elucidated and corresponding models are proposed. Nature Publishing Group 2016-07-28 /pmc/articles/PMC4964577/ /pubmed/27464476 http://dx.doi.org/10.1038/srep30587 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Ghobadi, Amir
Ulusoy, T. Gamze
Garifullin, Ruslan
Guler, Mustafa O.
Okyay, Ali K.
A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO(2)Nanowires for Superior Photocatalytic Performance
title A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO(2)Nanowires for Superior Photocatalytic Performance
title_full A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO(2)Nanowires for Superior Photocatalytic Performance
title_fullStr A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO(2)Nanowires for Superior Photocatalytic Performance
title_full_unstemmed A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO(2)Nanowires for Superior Photocatalytic Performance
title_short A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO(2)Nanowires for Superior Photocatalytic Performance
title_sort heterojunction design of single layer hole tunneling zno passivation wrapping around tio(2)nanowires for superior photocatalytic performance
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964577/
https://www.ncbi.nlm.nih.gov/pubmed/27464476
http://dx.doi.org/10.1038/srep30587
work_keys_str_mv AT ghobadiamir aheterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance
AT ulusoytgamze aheterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance
AT garifullinruslan aheterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance
AT gulermustafao aheterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance
AT okyayalik aheterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance
AT ghobadiamir heterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance
AT ulusoytgamze heterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance
AT garifullinruslan heterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance
AT gulermustafao heterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance
AT okyayalik heterojunctiondesignofsinglelayerholetunnelingznopassivationwrappingaroundtio2nanowiresforsuperiorphotocatalyticperformance