Cargando…
Development of a high-affinity peptide that prevents phospholemman (PLM) inhibition of the sodium/calcium exchanger 1 (NCX1)
NCX1 (Na(+)/Ca(2+) exchanger 1) is an important regulator of intracellular Ca(2+) and a potential therapeutic target for brain ischaemia and for diastolic heart failure with preserved ejection fraction. PLM (phospholemman), a substrate for protein kinases A and C, has been suggested to regulate NCX1...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964977/ https://www.ncbi.nlm.nih.gov/pubmed/27247424 http://dx.doi.org/10.1042/BCJ20160465 |
_version_ | 1782445187006464000 |
---|---|
author | Wanichawan, Pimthanya Hodne, Kjetil Hafver, Tandekile Lubelwana Lunde, Marianne Martinsen, Marita Louch, William Edward Sejersted, Ole Mathias Carlson, Cathrine Rein |
author_facet | Wanichawan, Pimthanya Hodne, Kjetil Hafver, Tandekile Lubelwana Lunde, Marianne Martinsen, Marita Louch, William Edward Sejersted, Ole Mathias Carlson, Cathrine Rein |
author_sort | Wanichawan, Pimthanya |
collection | PubMed |
description | NCX1 (Na(+)/Ca(2+) exchanger 1) is an important regulator of intracellular Ca(2+) and a potential therapeutic target for brain ischaemia and for diastolic heart failure with preserved ejection fraction. PLM (phospholemman), a substrate for protein kinases A and C, has been suggested to regulate NCX1 activity. However, although several studies have demonstrated that binding of phosphorylated PLM (pSer(68)-PLM) leads to NCX1 inhibition, other studies have failed to demonstrate a functional interaction of these proteins. In the present study, we aimed to analyse the biological function of the pSer(68)-PLM–NCX1 interaction by developing high-affinity blocking peptides. PLM was observed to co-fractionate and co-immunoprecipitate with NCX1 in rat left ventricle, and in co-transfected HEK (human embryonic kidney)-293 cells. For the first time, the NCX1–PLM interaction was also demonstrated in the brain. PLM binding sites on NCX1 were mapped to two regions by peptide array assays, containing the previously reported PASKT and QKHPD motifs. Conversely, the two NCX1 regions bound identical sequences in the cytoplasmic domain of PLM, suggesting that NCX1-PASKT and NCX1-QKHPD might bind to each PLM monomer. Using two-dimensional peptide arrays of the native NCX1 sequence KHPDKEIEQLIELANYQVLS revealed that double substitution of tyrosine for positions 1 and 4 (K1Y and D4Y) enhanced pSer(68)-PLM binding 8-fold. The optimized peptide blocked binding of NCX1-PASKT and NCX1-QKHPD to PLM and reversed PLM(S68D) inhibition of NCX1 activity (both forward and reverse mode) in HEK-293 cells. Altogether our data indicate that PLM interacts directly with NCX1 and inhibits NCX1 activity when phosphorylated at Ser(68). |
format | Online Article Text |
id | pubmed-4964977 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-49649772016-08-08 Development of a high-affinity peptide that prevents phospholemman (PLM) inhibition of the sodium/calcium exchanger 1 (NCX1) Wanichawan, Pimthanya Hodne, Kjetil Hafver, Tandekile Lubelwana Lunde, Marianne Martinsen, Marita Louch, William Edward Sejersted, Ole Mathias Carlson, Cathrine Rein Biochem J Research Articles NCX1 (Na(+)/Ca(2+) exchanger 1) is an important regulator of intracellular Ca(2+) and a potential therapeutic target for brain ischaemia and for diastolic heart failure with preserved ejection fraction. PLM (phospholemman), a substrate for protein kinases A and C, has been suggested to regulate NCX1 activity. However, although several studies have demonstrated that binding of phosphorylated PLM (pSer(68)-PLM) leads to NCX1 inhibition, other studies have failed to demonstrate a functional interaction of these proteins. In the present study, we aimed to analyse the biological function of the pSer(68)-PLM–NCX1 interaction by developing high-affinity blocking peptides. PLM was observed to co-fractionate and co-immunoprecipitate with NCX1 in rat left ventricle, and in co-transfected HEK (human embryonic kidney)-293 cells. For the first time, the NCX1–PLM interaction was also demonstrated in the brain. PLM binding sites on NCX1 were mapped to two regions by peptide array assays, containing the previously reported PASKT and QKHPD motifs. Conversely, the two NCX1 regions bound identical sequences in the cytoplasmic domain of PLM, suggesting that NCX1-PASKT and NCX1-QKHPD might bind to each PLM monomer. Using two-dimensional peptide arrays of the native NCX1 sequence KHPDKEIEQLIELANYQVLS revealed that double substitution of tyrosine for positions 1 and 4 (K1Y and D4Y) enhanced pSer(68)-PLM binding 8-fold. The optimized peptide blocked binding of NCX1-PASKT and NCX1-QKHPD to PLM and reversed PLM(S68D) inhibition of NCX1 activity (both forward and reverse mode) in HEK-293 cells. Altogether our data indicate that PLM interacts directly with NCX1 and inhibits NCX1 activity when phosphorylated at Ser(68). Portland Press Ltd. 2016-07-28 2016-08-01 /pmc/articles/PMC4964977/ /pubmed/27247424 http://dx.doi.org/10.1042/BCJ20160465 Text en © 2016 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence 4.0 (CC BY-NC-ND) (http://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Research Articles Wanichawan, Pimthanya Hodne, Kjetil Hafver, Tandekile Lubelwana Lunde, Marianne Martinsen, Marita Louch, William Edward Sejersted, Ole Mathias Carlson, Cathrine Rein Development of a high-affinity peptide that prevents phospholemman (PLM) inhibition of the sodium/calcium exchanger 1 (NCX1) |
title | Development of a high-affinity peptide that prevents phospholemman (PLM) inhibition of the sodium/calcium exchanger 1 (NCX1) |
title_full | Development of a high-affinity peptide that prevents phospholemman (PLM) inhibition of the sodium/calcium exchanger 1 (NCX1) |
title_fullStr | Development of a high-affinity peptide that prevents phospholemman (PLM) inhibition of the sodium/calcium exchanger 1 (NCX1) |
title_full_unstemmed | Development of a high-affinity peptide that prevents phospholemman (PLM) inhibition of the sodium/calcium exchanger 1 (NCX1) |
title_short | Development of a high-affinity peptide that prevents phospholemman (PLM) inhibition of the sodium/calcium exchanger 1 (NCX1) |
title_sort | development of a high-affinity peptide that prevents phospholemman (plm) inhibition of the sodium/calcium exchanger 1 (ncx1) |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964977/ https://www.ncbi.nlm.nih.gov/pubmed/27247424 http://dx.doi.org/10.1042/BCJ20160465 |
work_keys_str_mv | AT wanichawanpimthanya developmentofahighaffinitypeptidethatpreventsphospholemmanplminhibitionofthesodiumcalciumexchanger1ncx1 AT hodnekjetil developmentofahighaffinitypeptidethatpreventsphospholemmanplminhibitionofthesodiumcalciumexchanger1ncx1 AT hafvertandekilelubelwana developmentofahighaffinitypeptidethatpreventsphospholemmanplminhibitionofthesodiumcalciumexchanger1ncx1 AT lundemarianne developmentofahighaffinitypeptidethatpreventsphospholemmanplminhibitionofthesodiumcalciumexchanger1ncx1 AT martinsenmarita developmentofahighaffinitypeptidethatpreventsphospholemmanplminhibitionofthesodiumcalciumexchanger1ncx1 AT louchwilliamedward developmentofahighaffinitypeptidethatpreventsphospholemmanplminhibitionofthesodiumcalciumexchanger1ncx1 AT sejerstedolemathias developmentofahighaffinitypeptidethatpreventsphospholemmanplminhibitionofthesodiumcalciumexchanger1ncx1 AT carlsoncathrinerein developmentofahighaffinitypeptidethatpreventsphospholemmanplminhibitionofthesodiumcalciumexchanger1ncx1 |