Cargando…
Real-Time Subject-Independent Pattern Classification of Overt and Covert Movements from fNIRS Signals
Recently, studies have reported the use of Near Infrared Spectroscopy (NIRS) for developing Brain–Computer Interface (BCI) by applying online pattern classification of brain states from subject-specific fNIRS signals. The purpose of the present study was to develop and test a real-time method for su...
Autores principales: | Robinson, Neethu, Zaidi, Ali Danish, Rana, Mohit, Prasad, Vinod A., Guan, Cuntai, Birbaumer, Niels, Sitaram, Ranganatha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965045/ https://www.ncbi.nlm.nih.gov/pubmed/27467528 http://dx.doi.org/10.1371/journal.pone.0159959 |
Ejemplares similares
-
Correction: Real-Time Subject-Independent Pattern Classification of Overt and Covert Movements from fNIRS Signals
por: Robinson, Neethu, et al.
Publicado: (2016) -
Explainable artificial intelligence model to predict brain states from fNIRS signals
por: Shibu, Caleb Jones, et al.
Publicado: (2023) -
The hemodynamic initial-dip consists of both volumetric and oxymetric changes reflecting localized spiking activity
por: Zaidi, Ali Danish, et al.
Publicado: (2023) -
A subject-independent pattern-based Brain-Computer Interface
por: Ray, Andreas M., et al.
Publicado: (2015) -
Abnormal Neural Connectivity in Schizophrenia and fMRI-Brain-Computer Interface as a Potential Therapeutic Approach
por: Ruiz, Sergio, et al.
Publicado: (2013)