Cargando…

Proteomic Analysis of the Excretory and Secretory Proteins of Haemonchus contortus (HcESP) Binding to Goat PBMCs In Vivo Revealed Stage-Specific Binding Profiles

Haemonchus contortus is a parasitic gastrointestinal nematode, and its excretory and secretory products (HcESPs) interact extensively with the host cells. In this study, we report the interaction of proteins from HcESPs at different developmental stages to goat peripheral blood mononuclear cells (PB...

Descripción completa

Detalles Bibliográficos
Autores principales: Gadahi, Javaid Ali, Wang, Shuai, Bo, Gao, Ehsan, Muhammad, Yan, RuoFeng, Song, XiaoKai, Xu, LiXin, Li, XiangRui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965049/
https://www.ncbi.nlm.nih.gov/pubmed/27467391
http://dx.doi.org/10.1371/journal.pone.0159796
Descripción
Sumario:Haemonchus contortus is a parasitic gastrointestinal nematode, and its excretory and secretory products (HcESPs) interact extensively with the host cells. In this study, we report the interaction of proteins from HcESPs at different developmental stages to goat peripheral blood mononuclear cells (PBMCs) in vivo using liquid chromatography-tandem mass spectrometry. A total of 407 HcESPs that interacted with goat PBMCs at different time points were identified from a H. contortus protein database using SEQUEST searches. The L(4) and L(5) stages of H. contortus represented a higher proportion of the identified proteins compared with the early and late adult stages. Both stage-specific interacting proteins and proteins that were common to multiple stages were identified. Forty-seven interacting proteins were shared among all stages. The gene ontology (GO) distributions of the identified goat PBMC-interacting proteins were nearly identical among all developmental stages, with high representation of binding and catalytic activity. Cellular, metabolic and single-organism processes were also annotated as major biological processes, but interestingly, more proteins were annotated as localization processes at the L(5) stage than at the L(4) and adult stages. Based on the clustering of homologous proteins, we improved the functional annotations of un-annotated proteins identified at different developmental stages. Some unnamed H. contortus ATP-binding cassette proteins, including ADP-ribosylation factor and P-glycoprotein-9, were identified by STRING protein clustering analysis.