Cargando…
Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering
Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechani...
Autores principales: | Gao, Chuan, McDowell, Ian C., Zhao, Shiwen, Brown, Christopher D., Engelhardt, Barbara E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965098/ https://www.ncbi.nlm.nih.gov/pubmed/27467526 http://dx.doi.org/10.1371/journal.pcbi.1004791 |
Ejemplares similares
-
Construction of gene regulatory networks using biclustering and bayesian networks
por: Alakwaa, Fadhl M, et al.
Publicado: (2011) -
Bayesian biclustering of gene expression data
por: Gu, Jiajun, et al.
Publicado: (2008) -
Differential co-expression framework to quantify goodness of biclusters and compare biclustering algorithms
por: Chia, Burton Kuan Hui, et al.
Publicado: (2010) -
Co-expression networks reveal the tissue-specific regulation of transcription and splicing
por: Saha, Ashis, et al.
Publicado: (2017) -
Bayesian biclustering by dynamics: Algorithm testing, comparison against random agglomeration, and calculation of application specific prior information
por: Pinto, Helen, et al.
Publicado: (2020)