Cargando…
Ensembles of randomized trees using diverse distributed representations of clinical events
BACKGROUND: Learning deep representations of clinical events based on their distributions in electronic health records has been shown to allow for subsequent training of higher-performing predictive models compared to the use of shallow, count-based representations. The predictive performance may be...
Autores principales: | Henriksson, Aron, Zhao, Jing, Dalianis, Hercules, Boström, Henrik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965720/ https://www.ncbi.nlm.nih.gov/pubmed/27459846 http://dx.doi.org/10.1186/s12911-016-0309-0 |
Ejemplares similares
-
Predictive modeling of structured electronic health records for adverse drug event detection
por: Zhao, Jing, et al.
Publicado: (2015) -
Louhi 2014: Special issue on health text mining and information analysis
por: Velupillai, Sumithra, et al.
Publicado: (2015) -
De-identifying Swedish clinical text - refinement of a gold standard and experiments with Conditional random fields
por: Dalianis, Hercules, et al.
Publicado: (2010) -
Learning temporal weights of clinical events using variable importance
por: Zhao, Jing, et al.
Publicado: (2016) -
Detecting hospital-acquired infections: A document classification approach using support vector machines and gradient tree boosting
por: Ehrentraut, Claudia, et al.
Publicado: (2016)