Cargando…
Real-time Kinematic Positioning of INS Tightly Aided Multi-GNSS Ionospheric Constrained PPP
Real-time Precise Point Positioning (PPP) technique is being widely applied for providing precise positioning services with the significant improvement on satellite precise products accuracy. With the rapid development of the multi-constellation Global Navigation Satellite Systems (multi-GNSS), curr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965797/ https://www.ncbi.nlm.nih.gov/pubmed/27470270 http://dx.doi.org/10.1038/srep30488 |
Sumario: | Real-time Precise Point Positioning (PPP) technique is being widely applied for providing precise positioning services with the significant improvement on satellite precise products accuracy. With the rapid development of the multi-constellation Global Navigation Satellite Systems (multi-GNSS), currently, about 80 navigation satellites are operational in orbit. Obviously, PPP performance is dramatically improved with all satellites compared to that of GPS-only PPP. However, the performance of PPP could be evidently affected by unexpected and unavoidable severe observing environments, especially in the dynamic applications. Consequently, we apply Inertial Navigation System (INS) to the Ionospheric-Constrained (IC) PPP to overcome such drawbacks. The INS tightly aided multi-GNSS IC-PPP model can make full use of GNSS and INS observations to improve the PPP performance in terms of accuracy, availability, continuity, and convergence speed. Then, a set of airborne data is analyzed to evaluate and validate the improvement of multi-GNSS and INS on the performance of IC-PPP. |
---|