Cargando…

Fabrication and Manipulation of Ciliary Microrobots with Non-reciprocal Magnetic Actuation

Magnetically actuated ciliary microrobots were designed, fabricated, and manipulated to mimic cilia-based microorganisms such as paramecia. Full three-dimensional (3D) microrobot structures were fabricated using 3D laser lithography to form a polymer base structure. A nickel/titanium bilayer was spu...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Sangwon, Lee, Seungmin, Lee, Jeonghun, Nelson, Bradley J., Zhang, Li, Choi, Hongsoo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965827/
https://www.ncbi.nlm.nih.gov/pubmed/27470077
http://dx.doi.org/10.1038/srep30713
Descripción
Sumario:Magnetically actuated ciliary microrobots were designed, fabricated, and manipulated to mimic cilia-based microorganisms such as paramecia. Full three-dimensional (3D) microrobot structures were fabricated using 3D laser lithography to form a polymer base structure. A nickel/titanium bilayer was sputtered onto the cilia part of the microrobot to ensure magnetic actuation and biocompatibility. The microrobots were manipulated by an electromagnetic coil system, which generated a stepping magnetic field to actuate the cilia with non-reciprocal motion. The cilia beating motion produced a net propulsive force, resulting in movement of the microrobot. The magnetic forces on individual cilia were calculated with various input parameters including magnetic field strength, cilium length, applied field angle, actual cilium angle, etc., and the translational velocity was measured experimentally. The position and orientation of the ciliary microrobots were precisely controlled, and targeted particle transportation was demonstrated experimentally.