Cargando…

Biostatistics Series Module 4: Comparing Groups – Categorical Variables

Categorical variables are commonly represented as counts or frequencies. For analysis, such data are conveniently arranged in contingency tables. Conventionally, such tables are designated as r × c tables, with r denoting number of rows and c denoting number of columns. The Chi-square (χ(2)) probabi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hazra, Avijit, Gogtay, Nithya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4966396/
https://www.ncbi.nlm.nih.gov/pubmed/27512183
http://dx.doi.org/10.4103/0019-5154.185700
_version_ 1782445373679206400
author Hazra, Avijit
Gogtay, Nithya
author_facet Hazra, Avijit
Gogtay, Nithya
author_sort Hazra, Avijit
collection PubMed
description Categorical variables are commonly represented as counts or frequencies. For analysis, such data are conveniently arranged in contingency tables. Conventionally, such tables are designated as r × c tables, with r denoting number of rows and c denoting number of columns. The Chi-square (χ(2)) probability distribution is particularly useful in analyzing categorical variables. A number of tests yield test statistics that fit, at least approximately, a χ(2) distribution and hence are referred to as χ(2) tests. Examples include Pearson's χ(2) test (or simply the χ(2) test), McNemar's χ(2) test, Mantel–Haenszel χ(2) test and others. The Pearson's χ(2) test is the most commonly used test for assessing difference in distribution of a categorical variable between two or more independent groups. If the groups are ordered in some manner, the χ(2) test for trend should be used. The Fisher's exact probability test is a test of the independence between two dichotomous categorical variables. It provides a better alternative to the χ(2) statistic to assess the difference between two independent proportions when numbers are small, but cannot be applied to a contingency table larger than a two-dimensional one. The McNemar's χ(2) test assesses the difference between paired proportions. It is used when the frequencies in a 2 × 2 table represent paired samples or observations. The Cochran's Q test is a generalization of the McNemar's test that compares more than two related proportions. The P value from the χ(2) test or its counterparts does not indicate the strength of the difference or association between the categorical variables involved. This information can be obtained from the relative risk or the odds ratio statistic which is measures of dichotomous association obtained from 2 × 2 tables.
format Online
Article
Text
id pubmed-4966396
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Medknow Publications & Media Pvt Ltd
record_format MEDLINE/PubMed
spelling pubmed-49663962016-08-10 Biostatistics Series Module 4: Comparing Groups – Categorical Variables Hazra, Avijit Gogtay, Nithya Indian J Dermatol IJD® Module on Biostatistics and Research Methodology for the Dermatologist - Module Editor: Saumya Panda Categorical variables are commonly represented as counts or frequencies. For analysis, such data are conveniently arranged in contingency tables. Conventionally, such tables are designated as r × c tables, with r denoting number of rows and c denoting number of columns. The Chi-square (χ(2)) probability distribution is particularly useful in analyzing categorical variables. A number of tests yield test statistics that fit, at least approximately, a χ(2) distribution and hence are referred to as χ(2) tests. Examples include Pearson's χ(2) test (or simply the χ(2) test), McNemar's χ(2) test, Mantel–Haenszel χ(2) test and others. The Pearson's χ(2) test is the most commonly used test for assessing difference in distribution of a categorical variable between two or more independent groups. If the groups are ordered in some manner, the χ(2) test for trend should be used. The Fisher's exact probability test is a test of the independence between two dichotomous categorical variables. It provides a better alternative to the χ(2) statistic to assess the difference between two independent proportions when numbers are small, but cannot be applied to a contingency table larger than a two-dimensional one. The McNemar's χ(2) test assesses the difference between paired proportions. It is used when the frequencies in a 2 × 2 table represent paired samples or observations. The Cochran's Q test is a generalization of the McNemar's test that compares more than two related proportions. The P value from the χ(2) test or its counterparts does not indicate the strength of the difference or association between the categorical variables involved. This information can be obtained from the relative risk or the odds ratio statistic which is measures of dichotomous association obtained from 2 × 2 tables. Medknow Publications & Media Pvt Ltd 2016 /pmc/articles/PMC4966396/ /pubmed/27512183 http://dx.doi.org/10.4103/0019-5154.185700 Text en Copyright: © Indian Journal of Dermatology http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
spellingShingle IJD® Module on Biostatistics and Research Methodology for the Dermatologist - Module Editor: Saumya Panda
Hazra, Avijit
Gogtay, Nithya
Biostatistics Series Module 4: Comparing Groups – Categorical Variables
title Biostatistics Series Module 4: Comparing Groups – Categorical Variables
title_full Biostatistics Series Module 4: Comparing Groups – Categorical Variables
title_fullStr Biostatistics Series Module 4: Comparing Groups – Categorical Variables
title_full_unstemmed Biostatistics Series Module 4: Comparing Groups – Categorical Variables
title_short Biostatistics Series Module 4: Comparing Groups – Categorical Variables
title_sort biostatistics series module 4: comparing groups – categorical variables
topic IJD® Module on Biostatistics and Research Methodology for the Dermatologist - Module Editor: Saumya Panda
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4966396/
https://www.ncbi.nlm.nih.gov/pubmed/27512183
http://dx.doi.org/10.4103/0019-5154.185700
work_keys_str_mv AT hazraavijit biostatisticsseriesmodule4comparinggroupscategoricalvariables
AT gogtaynithya biostatisticsseriesmodule4comparinggroupscategoricalvariables