Cargando…
Acacia honey accelerates in vitro corneal ulcer wound healing model
BACKGROUND: The study aimed to evaluate the effects of Acacia honey (AH) on the migration, differentiation and healing properties of the cultured rabbit corneal fibroblasts. METHODS: Stromal derived corneal fibroblasts from New Zealand White rabbit (n = 6) were isolated and cultured until passage 1....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4966736/ https://www.ncbi.nlm.nih.gov/pubmed/27473120 http://dx.doi.org/10.1186/s12906-016-1248-0 |
Sumario: | BACKGROUND: The study aimed to evaluate the effects of Acacia honey (AH) on the migration, differentiation and healing properties of the cultured rabbit corneal fibroblasts. METHODS: Stromal derived corneal fibroblasts from New Zealand White rabbit (n = 6) were isolated and cultured until passage 1. In vitro corneal ulcer was created using a 4 mm corneal trephine onto confluent cultures and treated with basal medium (FD), medium containing serum (FDS), with and without 0.025 % AH. Wound areas were recorded at day 0, 3 and 6 post wound creation. Genes and proteins associated with wound healing and differentiation such as aldehyde dehydrogenase (ALDH), vimentin, alpha-smooth muscle actin (α-SMA), collagen type I, lumican and matrix metalloproteinase 12 (MMP12) were evaluated using qRT-PCR and immunocytochemistry respectively. RESULTS: Cells cultured with AH-enriched FDS media achieved complete wound closure at day 6 post wound creation. The cells cultured in AH-enriched FDS media increased the expression of vimentin, collagen type I and lumican genes and decreased the ALDH, α-SMA and MMP12 gene expressions. Protein expression of ALDH, vimentin and α-SMA were in accordance with the gene expression analyses. CONCLUSION: These results demonstrated AH accelerate corneal fibroblasts migration and differentiation of the in vitro corneal ulcer model while increasing the genes and proteins associated with stromal wound healing. |
---|