Cargando…
Joint analysis of multiple high-dimensional data types using sparse matrix approximations of rank-1 with applications to ovarian and liver cancer
BACKGROUND: Technological advances enable the cost-effective acquisition of Multi-Modal Data Sets (MMDS) composed of measurements for multiple, high-dimensional data types obtained from a common set of bio-samples. The joint analysis of the data matrices associated with the different data types of a...
Autores principales: | Okimoto, Gordon, Zeinalzadeh, Ashkan, Wenska, Tom, Loomis, Michael, Nation, James B., Fabre, Tiphaine, Tiirikainen, Maarit, Hernandez, Brenda, Chan, Owen, Wong, Linda, Kwee, Sandi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4966782/ https://www.ncbi.nlm.nih.gov/pubmed/27478503 http://dx.doi.org/10.1186/s13040-016-0103-7 |
Ejemplares similares
-
Elucidating the Landscape of Aberrant DNA Methylation in Hepatocellular Carcinoma
por: Song, Min-Ae, et al.
Publicado: (2013) -
Beta-catenin activation and immunotherapy resistance in hepatocellular carcinoma: mechanisms and biomarkers
por: Kwee, Sandi A., et al.
Publicado: (2021) -
Sparse reduced-rank regression for integrating omics data
por: Hilafu, Haileab, et al.
Publicado: (2020) -
Sparse generalized linear model with L(0) approximation for feature selection and prediction with big omics data
por: Liu, Zhenqiu, et al.
Publicado: (2017) -
Lower bounds for the low-rank matrix approximation
por: Li, Jicheng, et al.
Publicado: (2017)