Cargando…
Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator
A striking prediction in topological insulators is the appearance of the quantized Hall resistance when the surface states are magnetized. The surface Dirac states become gapped everywhere on the surface, but chiral edge states remain on the edges. In an applied current, the edge states produce a qu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4966877/ https://www.ncbi.nlm.nih.gov/pubmed/27482539 http://dx.doi.org/10.1126/sciadv.1600167 |
_version_ | 1782445449547874304 |
---|---|
author | Liu, Minhao Wang, Wudi Richardella, Anthony R. Kandala, Abhinav Li, Jian Yazdani, Ali Samarth, Nitin Ong, N. Phuan |
author_facet | Liu, Minhao Wang, Wudi Richardella, Anthony R. Kandala, Abhinav Li, Jian Yazdani, Ali Samarth, Nitin Ong, N. Phuan |
author_sort | Liu, Minhao |
collection | PubMed |
description | A striking prediction in topological insulators is the appearance of the quantized Hall resistance when the surface states are magnetized. The surface Dirac states become gapped everywhere on the surface, but chiral edge states remain on the edges. In an applied current, the edge states produce a quantized Hall resistance that equals the Chern number C = ±1 (in natural units), even in zero magnetic field. This quantum anomalous Hall effect was observed by Chang et al. With reversal of the magnetic field, the system is trapped in a metastable state because of magnetic anisotropy. We investigate how the system escapes the metastable state at low temperatures (10 to 200 mK). When the dissipation (measured by the longitudinal resistance) is ultralow, we find that the system escapes by making a few very rapid transitions, as detected by large jumps in the Hall and longitudinal resistances. Using the field at which the initial jump occurs to estimate the escape rate, we find that raising the temperature strongly suppresses the rate. From a detailed map of the resistance versus gate voltage and temperature, we show that dissipation strongly affects the escape rate. We compare the observations with dissipative quantum tunneling predictions. In the ultralow dissipation regime, two temperature scales (T(1) ~ 70 mK and T(2) ~ 145 mK) exist, between which jumps can be observed. The jumps display a spatial correlation that extends over a large fraction of the sample. |
format | Online Article Text |
id | pubmed-4966877 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49668772016-08-01 Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator Liu, Minhao Wang, Wudi Richardella, Anthony R. Kandala, Abhinav Li, Jian Yazdani, Ali Samarth, Nitin Ong, N. Phuan Sci Adv Research Articles A striking prediction in topological insulators is the appearance of the quantized Hall resistance when the surface states are magnetized. The surface Dirac states become gapped everywhere on the surface, but chiral edge states remain on the edges. In an applied current, the edge states produce a quantized Hall resistance that equals the Chern number C = ±1 (in natural units), even in zero magnetic field. This quantum anomalous Hall effect was observed by Chang et al. With reversal of the magnetic field, the system is trapped in a metastable state because of magnetic anisotropy. We investigate how the system escapes the metastable state at low temperatures (10 to 200 mK). When the dissipation (measured by the longitudinal resistance) is ultralow, we find that the system escapes by making a few very rapid transitions, as detected by large jumps in the Hall and longitudinal resistances. Using the field at which the initial jump occurs to estimate the escape rate, we find that raising the temperature strongly suppresses the rate. From a detailed map of the resistance versus gate voltage and temperature, we show that dissipation strongly affects the escape rate. We compare the observations with dissipative quantum tunneling predictions. In the ultralow dissipation regime, two temperature scales (T(1) ~ 70 mK and T(2) ~ 145 mK) exist, between which jumps can be observed. The jumps display a spatial correlation that extends over a large fraction of the sample. American Association for the Advancement of Science 2016-07-29 /pmc/articles/PMC4966877/ /pubmed/27482539 http://dx.doi.org/10.1126/sciadv.1600167 Text en Copyright © 2016, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Liu, Minhao Wang, Wudi Richardella, Anthony R. Kandala, Abhinav Li, Jian Yazdani, Ali Samarth, Nitin Ong, N. Phuan Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator |
title | Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator |
title_full | Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator |
title_fullStr | Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator |
title_full_unstemmed | Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator |
title_short | Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator |
title_sort | large discrete jumps observed in the transition between chern states in a ferromagnetic topological insulator |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4966877/ https://www.ncbi.nlm.nih.gov/pubmed/27482539 http://dx.doi.org/10.1126/sciadv.1600167 |
work_keys_str_mv | AT liuminhao largediscretejumpsobservedinthetransitionbetweenchernstatesinaferromagnetictopologicalinsulator AT wangwudi largediscretejumpsobservedinthetransitionbetweenchernstatesinaferromagnetictopologicalinsulator AT richardellaanthonyr largediscretejumpsobservedinthetransitionbetweenchernstatesinaferromagnetictopologicalinsulator AT kandalaabhinav largediscretejumpsobservedinthetransitionbetweenchernstatesinaferromagnetictopologicalinsulator AT lijian largediscretejumpsobservedinthetransitionbetweenchernstatesinaferromagnetictopologicalinsulator AT yazdaniali largediscretejumpsobservedinthetransitionbetweenchernstatesinaferromagnetictopologicalinsulator AT samarthnitin largediscretejumpsobservedinthetransitionbetweenchernstatesinaferromagnetictopologicalinsulator AT ongnphuan largediscretejumpsobservedinthetransitionbetweenchernstatesinaferromagnetictopologicalinsulator |