Cargando…

Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut

The human gastrointestinal tract harbours myriad bacterial species, collectively termed the microbiota, that strongly influence human health. Symbiotic members of our microbiota play a pivotal role in the digestion of complex carbohydrates that are otherwise recalcitrant to assimilation. Indeed, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Hemsworth, Glyn R., Thompson, Andrew J., Stepper, Judith, Sobala, Łukasz F., Coyle, Travis, Larsbrink, Johan, Spadiut, Oliver, Goddard-Borger, Ethan D., Stubbs, Keith A., Brumer, Harry, Davies, Gideon J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967831/
https://www.ncbi.nlm.nih.gov/pubmed/27466444
http://dx.doi.org/10.1098/rsob.160142
_version_ 1782445574228803584
author Hemsworth, Glyn R.
Thompson, Andrew J.
Stepper, Judith
Sobala, Łukasz F.
Coyle, Travis
Larsbrink, Johan
Spadiut, Oliver
Goddard-Borger, Ethan D.
Stubbs, Keith A.
Brumer, Harry
Davies, Gideon J.
author_facet Hemsworth, Glyn R.
Thompson, Andrew J.
Stepper, Judith
Sobala, Łukasz F.
Coyle, Travis
Larsbrink, Johan
Spadiut, Oliver
Goddard-Borger, Ethan D.
Stubbs, Keith A.
Brumer, Harry
Davies, Gideon J.
author_sort Hemsworth, Glyn R.
collection PubMed
description The human gastrointestinal tract harbours myriad bacterial species, collectively termed the microbiota, that strongly influence human health. Symbiotic members of our microbiota play a pivotal role in the digestion of complex carbohydrates that are otherwise recalcitrant to assimilation. Indeed, the intrinsic human polysaccharide-degrading enzyme repertoire is limited to various starch-based substrates; more complex polysaccharides demand microbial degradation. Select Bacteroidetes are responsible for the degradation of the ubiquitous vegetable xyloglucans (XyGs), through the concerted action of cohorts of enzymes and glycan-binding proteins encoded by specific xyloglucan utilization loci (XyGULs). Extending recent (meta)genomic, transcriptomic and biochemical analyses, significant questions remain regarding the structural biology of the molecular machinery required for XyG saccharification. Here, we reveal the three-dimensional structures of an α-xylosidase, a β-glucosidase, and two α-l-arabinofuranosidases from the Bacteroides ovatus XyGUL. Aided by bespoke ligand synthesis, our analyses highlight key adaptations in these enzymes that confer individual specificity for xyloglucan side chains and dictate concerted, stepwise disassembly of xyloglucan oligosaccharides. In harness with our recent structural characterization of the vanguard endo-xyloglucanse and cell-surface glycan-binding proteins, the present analysis provides a near-complete structural view of xyloglucan recognition and catalysis by XyGUL proteins.
format Online
Article
Text
id pubmed-4967831
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-49678312016-08-04 Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut Hemsworth, Glyn R. Thompson, Andrew J. Stepper, Judith Sobala, Łukasz F. Coyle, Travis Larsbrink, Johan Spadiut, Oliver Goddard-Borger, Ethan D. Stubbs, Keith A. Brumer, Harry Davies, Gideon J. Open Biol Research The human gastrointestinal tract harbours myriad bacterial species, collectively termed the microbiota, that strongly influence human health. Symbiotic members of our microbiota play a pivotal role in the digestion of complex carbohydrates that are otherwise recalcitrant to assimilation. Indeed, the intrinsic human polysaccharide-degrading enzyme repertoire is limited to various starch-based substrates; more complex polysaccharides demand microbial degradation. Select Bacteroidetes are responsible for the degradation of the ubiquitous vegetable xyloglucans (XyGs), through the concerted action of cohorts of enzymes and glycan-binding proteins encoded by specific xyloglucan utilization loci (XyGULs). Extending recent (meta)genomic, transcriptomic and biochemical analyses, significant questions remain regarding the structural biology of the molecular machinery required for XyG saccharification. Here, we reveal the three-dimensional structures of an α-xylosidase, a β-glucosidase, and two α-l-arabinofuranosidases from the Bacteroides ovatus XyGUL. Aided by bespoke ligand synthesis, our analyses highlight key adaptations in these enzymes that confer individual specificity for xyloglucan side chains and dictate concerted, stepwise disassembly of xyloglucan oligosaccharides. In harness with our recent structural characterization of the vanguard endo-xyloglucanse and cell-surface glycan-binding proteins, the present analysis provides a near-complete structural view of xyloglucan recognition and catalysis by XyGUL proteins. The Royal Society 2016-07-27 /pmc/articles/PMC4967831/ /pubmed/27466444 http://dx.doi.org/10.1098/rsob.160142 Text en © 2016 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Research
Hemsworth, Glyn R.
Thompson, Andrew J.
Stepper, Judith
Sobala, Łukasz F.
Coyle, Travis
Larsbrink, Johan
Spadiut, Oliver
Goddard-Borger, Ethan D.
Stubbs, Keith A.
Brumer, Harry
Davies, Gideon J.
Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut
title Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut
title_full Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut
title_fullStr Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut
title_full_unstemmed Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut
title_short Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut
title_sort structural dissection of a complex bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967831/
https://www.ncbi.nlm.nih.gov/pubmed/27466444
http://dx.doi.org/10.1098/rsob.160142
work_keys_str_mv AT hemsworthglynr structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut
AT thompsonandrewj structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut
AT stepperjudith structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut
AT sobalałukaszf structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut
AT coyletravis structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut
AT larsbrinkjohan structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut
AT spadiutoliver structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut
AT goddardborgerethand structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut
AT stubbskeitha structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut
AT brumerharry structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut
AT daviesgideonj structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut