Cargando…
Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut
The human gastrointestinal tract harbours myriad bacterial species, collectively termed the microbiota, that strongly influence human health. Symbiotic members of our microbiota play a pivotal role in the digestion of complex carbohydrates that are otherwise recalcitrant to assimilation. Indeed, the...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967831/ https://www.ncbi.nlm.nih.gov/pubmed/27466444 http://dx.doi.org/10.1098/rsob.160142 |
_version_ | 1782445574228803584 |
---|---|
author | Hemsworth, Glyn R. Thompson, Andrew J. Stepper, Judith Sobala, Łukasz F. Coyle, Travis Larsbrink, Johan Spadiut, Oliver Goddard-Borger, Ethan D. Stubbs, Keith A. Brumer, Harry Davies, Gideon J. |
author_facet | Hemsworth, Glyn R. Thompson, Andrew J. Stepper, Judith Sobala, Łukasz F. Coyle, Travis Larsbrink, Johan Spadiut, Oliver Goddard-Borger, Ethan D. Stubbs, Keith A. Brumer, Harry Davies, Gideon J. |
author_sort | Hemsworth, Glyn R. |
collection | PubMed |
description | The human gastrointestinal tract harbours myriad bacterial species, collectively termed the microbiota, that strongly influence human health. Symbiotic members of our microbiota play a pivotal role in the digestion of complex carbohydrates that are otherwise recalcitrant to assimilation. Indeed, the intrinsic human polysaccharide-degrading enzyme repertoire is limited to various starch-based substrates; more complex polysaccharides demand microbial degradation. Select Bacteroidetes are responsible for the degradation of the ubiquitous vegetable xyloglucans (XyGs), through the concerted action of cohorts of enzymes and glycan-binding proteins encoded by specific xyloglucan utilization loci (XyGULs). Extending recent (meta)genomic, transcriptomic and biochemical analyses, significant questions remain regarding the structural biology of the molecular machinery required for XyG saccharification. Here, we reveal the three-dimensional structures of an α-xylosidase, a β-glucosidase, and two α-l-arabinofuranosidases from the Bacteroides ovatus XyGUL. Aided by bespoke ligand synthesis, our analyses highlight key adaptations in these enzymes that confer individual specificity for xyloglucan side chains and dictate concerted, stepwise disassembly of xyloglucan oligosaccharides. In harness with our recent structural characterization of the vanguard endo-xyloglucanse and cell-surface glycan-binding proteins, the present analysis provides a near-complete structural view of xyloglucan recognition and catalysis by XyGUL proteins. |
format | Online Article Text |
id | pubmed-4967831 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-49678312016-08-04 Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut Hemsworth, Glyn R. Thompson, Andrew J. Stepper, Judith Sobala, Łukasz F. Coyle, Travis Larsbrink, Johan Spadiut, Oliver Goddard-Borger, Ethan D. Stubbs, Keith A. Brumer, Harry Davies, Gideon J. Open Biol Research The human gastrointestinal tract harbours myriad bacterial species, collectively termed the microbiota, that strongly influence human health. Symbiotic members of our microbiota play a pivotal role in the digestion of complex carbohydrates that are otherwise recalcitrant to assimilation. Indeed, the intrinsic human polysaccharide-degrading enzyme repertoire is limited to various starch-based substrates; more complex polysaccharides demand microbial degradation. Select Bacteroidetes are responsible for the degradation of the ubiquitous vegetable xyloglucans (XyGs), through the concerted action of cohorts of enzymes and glycan-binding proteins encoded by specific xyloglucan utilization loci (XyGULs). Extending recent (meta)genomic, transcriptomic and biochemical analyses, significant questions remain regarding the structural biology of the molecular machinery required for XyG saccharification. Here, we reveal the three-dimensional structures of an α-xylosidase, a β-glucosidase, and two α-l-arabinofuranosidases from the Bacteroides ovatus XyGUL. Aided by bespoke ligand synthesis, our analyses highlight key adaptations in these enzymes that confer individual specificity for xyloglucan side chains and dictate concerted, stepwise disassembly of xyloglucan oligosaccharides. In harness with our recent structural characterization of the vanguard endo-xyloglucanse and cell-surface glycan-binding proteins, the present analysis provides a near-complete structural view of xyloglucan recognition and catalysis by XyGUL proteins. The Royal Society 2016-07-27 /pmc/articles/PMC4967831/ /pubmed/27466444 http://dx.doi.org/10.1098/rsob.160142 Text en © 2016 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Hemsworth, Glyn R. Thompson, Andrew J. Stepper, Judith Sobala, Łukasz F. Coyle, Travis Larsbrink, Johan Spadiut, Oliver Goddard-Borger, Ethan D. Stubbs, Keith A. Brumer, Harry Davies, Gideon J. Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut |
title | Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut |
title_full | Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut |
title_fullStr | Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut |
title_full_unstemmed | Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut |
title_short | Structural dissection of a complex Bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut |
title_sort | structural dissection of a complex bacteroides ovatus gene locus conferring xyloglucan metabolism in the human gut |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967831/ https://www.ncbi.nlm.nih.gov/pubmed/27466444 http://dx.doi.org/10.1098/rsob.160142 |
work_keys_str_mv | AT hemsworthglynr structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut AT thompsonandrewj structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut AT stepperjudith structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut AT sobalałukaszf structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut AT coyletravis structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut AT larsbrinkjohan structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut AT spadiutoliver structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut AT goddardborgerethand structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut AT stubbskeitha structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut AT brumerharry structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut AT daviesgideonj structuraldissectionofacomplexbacteroidesovatusgenelocusconferringxyloglucanmetabolisminthehumangut |