Cargando…
Round Randomized Learning Vector Quantization for Brain Tumor Imaging
Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is t...
Autores principales: | Sheikh Abdullah, Siti Norul Huda, Bohani, Farah Aqilah, Nayef, Baher H., Sahran, Shahnorbanun, Al Akash, Omar, Iqbal Hussain, Rizuana, Ismail, Fuad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967986/ https://www.ncbi.nlm.nih.gov/pubmed/27516807 http://dx.doi.org/10.1155/2016/8603609 |
Ejemplares similares
-
Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization
por: Abdulameer, Mohammed Hasan, et al.
Publicado: (2014) -
Automatic Detection and Quantification of WBCs and RBCs Using Iterative Structured Circle Detection Algorithm
por: Alomari, Yazan M., et al.
Publicado: (2014) -
Adaptive Localization of Focus Point Regions via Random Patch Probabilistic Density from Whole-Slide, Ki-67-Stained Brain Tumor Tissue
por: Alomari, Yazan M., et al.
Publicado: (2015) -
A Modified Active Appearance Model Based on an Adaptive Artificial Bee Colony
por: Abdulameer, Mohammed Hasan, et al.
Publicado: (2014) -
Accuracy of Using Generative Adversarial Networks for Glaucoma Detection: Systematic Review and Bibliometric Analysis
por: Saeed, Ali Q, et al.
Publicado: (2021)