Cargando…
Fuzzy Clustering Applied to ROI Detection in Helical Thoracic CT Scans with a New Proposal and Variants
The detection of pulmonary nodules is one of the most studied problems in the field of medical image analysis due to the great difficulty in the early detection of such nodules and their social impact. The traditional approach involves the development of a multistage CAD system capable of informing...
Autores principales: | Castro, Alfonso, Rey, Alberto, Boveda, Carmen, Arcay, Bernardino, Sanjurjo, Pedro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967987/ https://www.ncbi.nlm.nih.gov/pubmed/27517049 http://dx.doi.org/10.1155/2016/8058245 |
Ejemplares similares
-
ROI extraction in CT lung images of COVID-19 using Fast Fuzzy C means clustering
por: Kumar, S.N., et al.
Publicado: (2021) -
Direct measurement of CTDI(w) on helical CT scans
por: DePew, Kyle D., et al.
Publicado: (2022) -
ROI Basics
por: Phillips, Jack
Publicado: (2019) -
Feasibility study of shutter scan acquisition for region of interest (ROI) digital tomosynthesis
por: Kim, Dohyeon, et al.
Publicado: (2018) -
FDK-Type Algorithms with No Backprojection Weight for Circular and Helical Scan CT
por: Narasimhadhan, A. V., et al.
Publicado: (2012)