Cargando…
Activation of lignocellulosic biomass for higher sugar yields using aqueous ionic liquid at low severity process conditions
BACKGROUND: Concerns around greenhouse gas emissions necessitate the development of sustainable processes for the production of chemicals, materials, and fuels from alternative renewable sources. The lignocellulosic plant cell walls are one of the most abundant sources of carbon for renewable bioene...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4969646/ https://www.ncbi.nlm.nih.gov/pubmed/27486479 http://dx.doi.org/10.1186/s13068-016-0561-7 |
_version_ | 1782445814093709312 |
---|---|
author | Parthasarathi, Ramakrishnan Sun, Jian Dutta, Tanmoy Sun, Ning Pattathil, Sivakumar Murthy Konda, N. V. S. N. Peralta, Angelo Gabriel Simmons, Blake A. Singh, Seema |
author_facet | Parthasarathi, Ramakrishnan Sun, Jian Dutta, Tanmoy Sun, Ning Pattathil, Sivakumar Murthy Konda, N. V. S. N. Peralta, Angelo Gabriel Simmons, Blake A. Singh, Seema |
author_sort | Parthasarathi, Ramakrishnan |
collection | PubMed |
description | BACKGROUND: Concerns around greenhouse gas emissions necessitate the development of sustainable processes for the production of chemicals, materials, and fuels from alternative renewable sources. The lignocellulosic plant cell walls are one of the most abundant sources of carbon for renewable bioenergy production. Certain ionic liquids (ILs) are very effective at disrupting the plant cell walls of lignocellulose, and generate a substrate that is effectively hydrolyzed into fermentable sugars. Conventional ILs are relatively expensive in terms of purchase price, and the most effective imidazolium-based ILs also require energy intensive processing conditions (>140 °C, 3 h) to release >90 % fermentable sugar yields after saccharification. RESULTS: We have developed a highly effective pretreatment technology utilizing the relatively inexpensive IL comprised tetrabutylammonium [TBA](+) and hydroxide [OH](−) ions that generate high glucose yields (~95 %) after pretreatment at very mild processing conditions (50 °C). The efficiency of [TBA][OH] pretreatment of lignocellulose was further studied by analyzing chemical composition, powder X-ray diffraction for cellulose structure, NMR and SEC for lignin dissolution/depolymerization, and glycome profiling for cell wall modifications. Glycome profiling experiments and computational results indicate that removal of the noncellulosic polysaccharides occurs due to the ionic mobility of [TBA][OH] and is the key factor in determining pretreatment efficiency. Process modeling and energy demand analysis suggests that this [TBA][OH] pretreatment could potentially reduce the energy required in the pretreatment unit operation by more than 75 %. CONCLUSIONS: By leveraging the benefits of ILs that are effective at very mild processing conditions, such as [TBA][OH], lignocellulosic biomass can be pretreated at similar efficiency as top performing conventional ILs, such as 1-ethyl-3-methylimidazolium acetate [C(2)C(1)Im][OAc], but at much lower temperatures, and with less than half the IL normally required to be effective. [TBA][OH] IL is more reactive in terms of ionic mobility which extends removal of lignin and noncellulosic components of biomass at the lower temperature pretreatment. This approach to biomass pretreatment at lower temperatures could be transformative in the affordability and energy efficiency of lignocellulosic biorefineries. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-016-0561-7) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4969646 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-49696462016-08-03 Activation of lignocellulosic biomass for higher sugar yields using aqueous ionic liquid at low severity process conditions Parthasarathi, Ramakrishnan Sun, Jian Dutta, Tanmoy Sun, Ning Pattathil, Sivakumar Murthy Konda, N. V. S. N. Peralta, Angelo Gabriel Simmons, Blake A. Singh, Seema Biotechnol Biofuels Research BACKGROUND: Concerns around greenhouse gas emissions necessitate the development of sustainable processes for the production of chemicals, materials, and fuels from alternative renewable sources. The lignocellulosic plant cell walls are one of the most abundant sources of carbon for renewable bioenergy production. Certain ionic liquids (ILs) are very effective at disrupting the plant cell walls of lignocellulose, and generate a substrate that is effectively hydrolyzed into fermentable sugars. Conventional ILs are relatively expensive in terms of purchase price, and the most effective imidazolium-based ILs also require energy intensive processing conditions (>140 °C, 3 h) to release >90 % fermentable sugar yields after saccharification. RESULTS: We have developed a highly effective pretreatment technology utilizing the relatively inexpensive IL comprised tetrabutylammonium [TBA](+) and hydroxide [OH](−) ions that generate high glucose yields (~95 %) after pretreatment at very mild processing conditions (50 °C). The efficiency of [TBA][OH] pretreatment of lignocellulose was further studied by analyzing chemical composition, powder X-ray diffraction for cellulose structure, NMR and SEC for lignin dissolution/depolymerization, and glycome profiling for cell wall modifications. Glycome profiling experiments and computational results indicate that removal of the noncellulosic polysaccharides occurs due to the ionic mobility of [TBA][OH] and is the key factor in determining pretreatment efficiency. Process modeling and energy demand analysis suggests that this [TBA][OH] pretreatment could potentially reduce the energy required in the pretreatment unit operation by more than 75 %. CONCLUSIONS: By leveraging the benefits of ILs that are effective at very mild processing conditions, such as [TBA][OH], lignocellulosic biomass can be pretreated at similar efficiency as top performing conventional ILs, such as 1-ethyl-3-methylimidazolium acetate [C(2)C(1)Im][OAc], but at much lower temperatures, and with less than half the IL normally required to be effective. [TBA][OH] IL is more reactive in terms of ionic mobility which extends removal of lignin and noncellulosic components of biomass at the lower temperature pretreatment. This approach to biomass pretreatment at lower temperatures could be transformative in the affordability and energy efficiency of lignocellulosic biorefineries. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-016-0561-7) contains supplementary material, which is available to authorized users. BioMed Central 2016-08-02 /pmc/articles/PMC4969646/ /pubmed/27486479 http://dx.doi.org/10.1186/s13068-016-0561-7 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Parthasarathi, Ramakrishnan Sun, Jian Dutta, Tanmoy Sun, Ning Pattathil, Sivakumar Murthy Konda, N. V. S. N. Peralta, Angelo Gabriel Simmons, Blake A. Singh, Seema Activation of lignocellulosic biomass for higher sugar yields using aqueous ionic liquid at low severity process conditions |
title | Activation of lignocellulosic biomass for higher sugar yields using aqueous ionic liquid at low severity process conditions |
title_full | Activation of lignocellulosic biomass for higher sugar yields using aqueous ionic liquid at low severity process conditions |
title_fullStr | Activation of lignocellulosic biomass for higher sugar yields using aqueous ionic liquid at low severity process conditions |
title_full_unstemmed | Activation of lignocellulosic biomass for higher sugar yields using aqueous ionic liquid at low severity process conditions |
title_short | Activation of lignocellulosic biomass for higher sugar yields using aqueous ionic liquid at low severity process conditions |
title_sort | activation of lignocellulosic biomass for higher sugar yields using aqueous ionic liquid at low severity process conditions |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4969646/ https://www.ncbi.nlm.nih.gov/pubmed/27486479 http://dx.doi.org/10.1186/s13068-016-0561-7 |
work_keys_str_mv | AT parthasarathiramakrishnan activationoflignocellulosicbiomassforhighersugaryieldsusingaqueousionicliquidatlowseverityprocessconditions AT sunjian activationoflignocellulosicbiomassforhighersugaryieldsusingaqueousionicliquidatlowseverityprocessconditions AT duttatanmoy activationoflignocellulosicbiomassforhighersugaryieldsusingaqueousionicliquidatlowseverityprocessconditions AT sunning activationoflignocellulosicbiomassforhighersugaryieldsusingaqueousionicliquidatlowseverityprocessconditions AT pattathilsivakumar activationoflignocellulosicbiomassforhighersugaryieldsusingaqueousionicliquidatlowseverityprocessconditions AT murthykondanvsn activationoflignocellulosicbiomassforhighersugaryieldsusingaqueousionicliquidatlowseverityprocessconditions AT peraltaangelogabriel activationoflignocellulosicbiomassforhighersugaryieldsusingaqueousionicliquidatlowseverityprocessconditions AT simmonsblakea activationoflignocellulosicbiomassforhighersugaryieldsusingaqueousionicliquidatlowseverityprocessconditions AT singhseema activationoflignocellulosicbiomassforhighersugaryieldsusingaqueousionicliquidatlowseverityprocessconditions |