Cargando…

A likely inverse-Compton emission from the Type IIb SN 2013df

The inverse-Compton X-ray emission model for supernovae has been well established to explain the X-ray properties of many supernovae for over 30 years. However, no observational case has yet been found to connect the X-rays with the optical lights as they should be. Here, we report the discovery of...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, K. L., Kong, A. K. H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4969746/
https://www.ncbi.nlm.nih.gov/pubmed/27481538
http://dx.doi.org/10.1038/srep30638
Descripción
Sumario:The inverse-Compton X-ray emission model for supernovae has been well established to explain the X-ray properties of many supernovae for over 30 years. However, no observational case has yet been found to connect the X-rays with the optical lights as they should be. Here, we report the discovery of a hard X-ray source that is associated with a Type II-b supernova. Simultaneous emission enhancements have been found in both the X-ray and optical light curves twenty days after the supernova explosion. While the enhanced X-rays are likely dominated by inverse-Compton scatterings of the supernova’s lights from the Type II-b secondary peak, we propose a scenario of a high-speed supernova ejecta colliding with a low-density pre-supernova stellar wind that produces an optically thin and high-temperature electron gas for the Comptonization. The inferred stellar wind mass-loss rate is consistent with that of the supernova progenitor candidate as a yellow supergiant detected by the Hubble Space Telescope, providing an independent proof for the progenitor. This is also new evidence of the inverse-Compton emission during the early phase of a supernova.