Cargando…
A Distributed Learning Method for [Formula: see text]-Regularized Kernel Machine over Wireless Sensor Networks
In wireless sensor networks, centralized learning methods have very high communication costs and energy consumption. These are caused by the need to transmit scattered training examples from various sensor nodes to the central fusion center where a classifier or a regression machine is trained. To r...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970071/ https://www.ncbi.nlm.nih.gov/pubmed/27376298 http://dx.doi.org/10.3390/s16071021 |
_version_ | 1782445905415241728 |
---|---|
author | Ji, Xinrong Hou, Cuiqin Hou, Yibin Gao, Fang Wang, Shulong |
author_facet | Ji, Xinrong Hou, Cuiqin Hou, Yibin Gao, Fang Wang, Shulong |
author_sort | Ji, Xinrong |
collection | PubMed |
description | In wireless sensor networks, centralized learning methods have very high communication costs and energy consumption. These are caused by the need to transmit scattered training examples from various sensor nodes to the central fusion center where a classifier or a regression machine is trained. To reduce the communication cost, a distributed learning method for a kernel machine that incorporates [Formula: see text] norm regularization ([Formula: see text]-regularized) is investigated, and a novel distributed learning algorithm for the [Formula: see text]-regularized kernel minimum mean squared error (KMSE) machine is proposed. The proposed algorithm relies on in-network processing and a collaboration that transmits the sparse model only between single-hop neighboring nodes. This paper evaluates the proposed algorithm with respect to the prediction accuracy, the sparse rate of model, the communication cost and the number of iterations on synthetic and real datasets. The simulation results show that the proposed algorithm can obtain approximately the same prediction accuracy as that obtained by the batch learning method. Moreover, it is significantly superior in terms of the sparse rate of model and communication cost, and it can converge with fewer iterations. Finally, an experiment conducted on a wireless sensor network (WSN) test platform further shows the advantages of the proposed algorithm with respect to communication cost. |
format | Online Article Text |
id | pubmed-4970071 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-49700712016-08-04 A Distributed Learning Method for [Formula: see text]-Regularized Kernel Machine over Wireless Sensor Networks Ji, Xinrong Hou, Cuiqin Hou, Yibin Gao, Fang Wang, Shulong Sensors (Basel) Article In wireless sensor networks, centralized learning methods have very high communication costs and energy consumption. These are caused by the need to transmit scattered training examples from various sensor nodes to the central fusion center where a classifier or a regression machine is trained. To reduce the communication cost, a distributed learning method for a kernel machine that incorporates [Formula: see text] norm regularization ([Formula: see text]-regularized) is investigated, and a novel distributed learning algorithm for the [Formula: see text]-regularized kernel minimum mean squared error (KMSE) machine is proposed. The proposed algorithm relies on in-network processing and a collaboration that transmits the sparse model only between single-hop neighboring nodes. This paper evaluates the proposed algorithm with respect to the prediction accuracy, the sparse rate of model, the communication cost and the number of iterations on synthetic and real datasets. The simulation results show that the proposed algorithm can obtain approximately the same prediction accuracy as that obtained by the batch learning method. Moreover, it is significantly superior in terms of the sparse rate of model and communication cost, and it can converge with fewer iterations. Finally, an experiment conducted on a wireless sensor network (WSN) test platform further shows the advantages of the proposed algorithm with respect to communication cost. MDPI 2016-07-01 /pmc/articles/PMC4970071/ /pubmed/27376298 http://dx.doi.org/10.3390/s16071021 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ji, Xinrong Hou, Cuiqin Hou, Yibin Gao, Fang Wang, Shulong A Distributed Learning Method for [Formula: see text]-Regularized Kernel Machine over Wireless Sensor Networks |
title | A Distributed Learning Method for [Formula: see text]-Regularized Kernel Machine over Wireless Sensor Networks |
title_full | A Distributed Learning Method for [Formula: see text]-Regularized Kernel Machine over Wireless Sensor Networks |
title_fullStr | A Distributed Learning Method for [Formula: see text]-Regularized Kernel Machine over Wireless Sensor Networks |
title_full_unstemmed | A Distributed Learning Method for [Formula: see text]-Regularized Kernel Machine over Wireless Sensor Networks |
title_short | A Distributed Learning Method for [Formula: see text]-Regularized Kernel Machine over Wireless Sensor Networks |
title_sort | distributed learning method for [formula: see text]-regularized kernel machine over wireless sensor networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970071/ https://www.ncbi.nlm.nih.gov/pubmed/27376298 http://dx.doi.org/10.3390/s16071021 |
work_keys_str_mv | AT jixinrong adistributedlearningmethodforformulaseetextregularizedkernelmachineoverwirelesssensornetworks AT houcuiqin adistributedlearningmethodforformulaseetextregularizedkernelmachineoverwirelesssensornetworks AT houyibin adistributedlearningmethodforformulaseetextregularizedkernelmachineoverwirelesssensornetworks AT gaofang adistributedlearningmethodforformulaseetextregularizedkernelmachineoverwirelesssensornetworks AT wangshulong adistributedlearningmethodforformulaseetextregularizedkernelmachineoverwirelesssensornetworks AT jixinrong distributedlearningmethodforformulaseetextregularizedkernelmachineoverwirelesssensornetworks AT houcuiqin distributedlearningmethodforformulaseetextregularizedkernelmachineoverwirelesssensornetworks AT houyibin distributedlearningmethodforformulaseetextregularizedkernelmachineoverwirelesssensornetworks AT gaofang distributedlearningmethodforformulaseetextregularizedkernelmachineoverwirelesssensornetworks AT wangshulong distributedlearningmethodforformulaseetextregularizedkernelmachineoverwirelesssensornetworks |