Cargando…
An MEF-Based Localization Algorithm against Outliers in Wireless Sensor Networks
Precise localization has attracted considerable interest in Wireless Sensor Networks (WSNs) localization systems. Due to the internal or external disturbance, the existence of the outliers, including both the distance outliers and the anchor outliers, severely decreases the localization accuracy. In...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970090/ https://www.ncbi.nlm.nih.gov/pubmed/27399707 http://dx.doi.org/10.3390/s16071041 |
Sumario: | Precise localization has attracted considerable interest in Wireless Sensor Networks (WSNs) localization systems. Due to the internal or external disturbance, the existence of the outliers, including both the distance outliers and the anchor outliers, severely decreases the localization accuracy. In order to eliminate both kinds of outliers simultaneously, an outlier detection method is proposed based on the maximum entropy principle and fuzzy set theory. Since not all the outliers can be detected in the detection process, the Maximum Entropy Function (MEF) method is utilized to tolerate the errors and calculate the optimal estimated locations of unknown nodes. Simulation results demonstrate that the proposed localization method remains stable while the outliers vary. Moreover, the localization accuracy is highly improved by wisely rejecting outliers. |
---|