Cargando…
The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation
This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the meas...
Autores principales: | Gao, Siwei, Liu, Yanheng, Wang, Jian, Deng, Weiwen, Oh, Heekuck |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970148/ https://www.ncbi.nlm.nih.gov/pubmed/27438835 http://dx.doi.org/10.3390/s16071103 |
Ejemplares similares
-
Motion State Estimation of Target Vehicle under Unknown Time-Varying Noises Based on Improved Square-Root Cubature Kalman Filter
por: Song, Shiping, et al.
Publicado: (2020) -
Vehicle State Estimation Combining Physics-Informed Neural Network and Unscented Kalman Filtering on Manifolds
por: Tan, Chenkai, et al.
Publicado: (2023) -
Unscented Kalman Filtering for Single Camera Based Motion and Shape Estimation
por: Jwo, Dah-Jing, et al.
Publicado: (2011) -
Estimation of states and parameters of multi-axle distributed electric vehicle based on dual unscented Kalman filter
por: Pei, Xiaofei, et al.
Publicado: (2019) -
Adaptive Extended Kalman Filter with Correntropy Loss for Robust Power System State Estimation
por: Zhang, Zhiyu, et al.
Publicado: (2019)