Cargando…
Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections
With the growing demand of Intelligent Transportation Systems (ITS) for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponen...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970182/ https://www.ncbi.nlm.nih.gov/pubmed/27455270 http://dx.doi.org/10.3390/s16071140 |
_version_ | 1782445930596794368 |
---|---|
author | Azpilicueta, Leyre López-Iturri, Peio Aguirre, Erik Martínez, Carlos Astrain, José Javier Villadangos, Jesús Falcone, Francisco |
author_facet | Azpilicueta, Leyre López-Iturri, Peio Aguirre, Erik Martínez, Carlos Astrain, José Javier Villadangos, Jesús Falcone, Francisco |
author_sort | Azpilicueta, Leyre |
collection | PubMed |
description | With the growing demand of Intelligent Transportation Systems (ITS) for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponentially. However, it is highly important to analyze radio propagation prior to the deployment of a wireless sensor network in such complex scenarios. In this work, the radio wave characterization for ISM 2.4 GHz and 5 GHz Wireless Sensor Networks (WSNs) deployed taking advantage of the existence of traffic light infrastructure has been assessed. By means of an in-house developed 3D ray launching algorithm, the impact of topology as well as urban morphology of the environment has been analyzed, emulating the realistic operation in the framework of the scenario. The complexity of the scenario, which is an intersection city area with traffic lights, vehicles, people, buildings, vegetation and urban environment, makes necessary the channel characterization with accurate models before the deployment of wireless networks. A measurement campaign has been conducted emulating the interaction of the system, in the vicinity of pedestrians as well as nearby vehicles. A real time interactive application has been developed and tested in order to visualize and monitor traffic as well as pedestrian user location and behavior. Results show that the use of deterministic tools in WSN deployment can aid in providing optimal layouts in terms of coverage, capacity and energy efficiency of the network. |
format | Online Article Text |
id | pubmed-4970182 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-49701822016-08-04 Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections Azpilicueta, Leyre López-Iturri, Peio Aguirre, Erik Martínez, Carlos Astrain, José Javier Villadangos, Jesús Falcone, Francisco Sensors (Basel) Article With the growing demand of Intelligent Transportation Systems (ITS) for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponentially. However, it is highly important to analyze radio propagation prior to the deployment of a wireless sensor network in such complex scenarios. In this work, the radio wave characterization for ISM 2.4 GHz and 5 GHz Wireless Sensor Networks (WSNs) deployed taking advantage of the existence of traffic light infrastructure has been assessed. By means of an in-house developed 3D ray launching algorithm, the impact of topology as well as urban morphology of the environment has been analyzed, emulating the realistic operation in the framework of the scenario. The complexity of the scenario, which is an intersection city area with traffic lights, vehicles, people, buildings, vegetation and urban environment, makes necessary the channel characterization with accurate models before the deployment of wireless networks. A measurement campaign has been conducted emulating the interaction of the system, in the vicinity of pedestrians as well as nearby vehicles. A real time interactive application has been developed and tested in order to visualize and monitor traffic as well as pedestrian user location and behavior. Results show that the use of deterministic tools in WSN deployment can aid in providing optimal layouts in terms of coverage, capacity and energy efficiency of the network. MDPI 2016-07-22 /pmc/articles/PMC4970182/ /pubmed/27455270 http://dx.doi.org/10.3390/s16071140 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Azpilicueta, Leyre López-Iturri, Peio Aguirre, Erik Martínez, Carlos Astrain, José Javier Villadangos, Jesús Falcone, Francisco Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections |
title | Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections |
title_full | Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections |
title_fullStr | Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections |
title_full_unstemmed | Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections |
title_short | Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections |
title_sort | evaluation of deployment challenges of wireless sensor networks at signalized intersections |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970182/ https://www.ncbi.nlm.nih.gov/pubmed/27455270 http://dx.doi.org/10.3390/s16071140 |
work_keys_str_mv | AT azpilicuetaleyre evaluationofdeploymentchallengesofwirelesssensornetworksatsignalizedintersections AT lopeziturripeio evaluationofdeploymentchallengesofwirelesssensornetworksatsignalizedintersections AT aguirreerik evaluationofdeploymentchallengesofwirelesssensornetworksatsignalizedintersections AT martinezcarlos evaluationofdeploymentchallengesofwirelesssensornetworksatsignalizedintersections AT astrainjosejavier evaluationofdeploymentchallengesofwirelesssensornetworksatsignalizedintersections AT villadangosjesus evaluationofdeploymentchallengesofwirelesssensornetworksatsignalizedintersections AT falconefrancisco evaluationofdeploymentchallengesofwirelesssensornetworksatsignalizedintersections |