Cargando…

mito-QC illuminates mitophagy and mitochondrial architecture in vivo

Autophagic turnover of mitochondria, termed mitophagy, is proposed to be an essential quality-control (QC) mechanism of pathophysiological relevance in mammals. However, if and how mitophagy proceeds within specific cellular subtypes in vivo remains unclear, largely because of a lack of tractable to...

Descripción completa

Detalles Bibliográficos
Autores principales: McWilliams, Thomas G., Prescott, Alan R., Allen, George F.G., Tamjar, Jevgenia, Munson, Michael J., Thomson, Calum, Muqit, Miratul M.K., Ganley, Ian G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970326/
https://www.ncbi.nlm.nih.gov/pubmed/27458135
http://dx.doi.org/10.1083/jcb.201603039
Descripción
Sumario:Autophagic turnover of mitochondria, termed mitophagy, is proposed to be an essential quality-control (QC) mechanism of pathophysiological relevance in mammals. However, if and how mitophagy proceeds within specific cellular subtypes in vivo remains unclear, largely because of a lack of tractable tools and models. To address this, we have developed “mito-QC,” a transgenic mouse with a pH-sensitive fluorescent mitochondrial signal. This allows the assessment of mitophagy and mitochondrial architecture in vivo. Using confocal microscopy, we demonstrate that mito-QC is compatible with classical and contemporary techniques in histochemistry and allows unambiguous in vivo detection of mitophagy and mitochondrial morphology at single-cell resolution within multiple organ systems. Strikingly, our model uncovers highly enriched and differential zones of mitophagy in the developing heart and within specific cells of the adult kidney. mito-QC is an experimentally advantageous tool of broad relevance to cell biology researchers within both discovery-based and translational research communities.