Cargando…

Demonstration of Non-Gaussian Restricted Diffusion in Tumor Cells Using Diffusion Time-Dependent Diffusion-Weighted Magnetic Resonance Imaging Contrast

The diffusion-weighted magnetic resonance imaging (DWI) technique enables quantification of water mobility for probing microstructural properties of biological tissue and has become an effective tool for collecting information about the underlying pathology of cancerous tissue. Measurements using mu...

Descripción completa

Detalles Bibliográficos
Autores principales: Hope, Tuva R., White, Nathan S., Kuperman, Joshua, Chao, Ying, Yamin, Ghiam, Bartch, Hauke, Schenker-Ahmed, Natalie M., Rakow-Penner, Rebecca, Bussell, Robert, Nomura, Natsuko, Kesari, Santosh, Bjørnerud, Atle, Dale, Anders M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970563/
https://www.ncbi.nlm.nih.gov/pubmed/27532028
http://dx.doi.org/10.3389/fonc.2016.00179
_version_ 1782445988377526272
author Hope, Tuva R.
White, Nathan S.
Kuperman, Joshua
Chao, Ying
Yamin, Ghiam
Bartch, Hauke
Schenker-Ahmed, Natalie M.
Rakow-Penner, Rebecca
Bussell, Robert
Nomura, Natsuko
Kesari, Santosh
Bjørnerud, Atle
Dale, Anders M.
author_facet Hope, Tuva R.
White, Nathan S.
Kuperman, Joshua
Chao, Ying
Yamin, Ghiam
Bartch, Hauke
Schenker-Ahmed, Natalie M.
Rakow-Penner, Rebecca
Bussell, Robert
Nomura, Natsuko
Kesari, Santosh
Bjørnerud, Atle
Dale, Anders M.
author_sort Hope, Tuva R.
collection PubMed
description The diffusion-weighted magnetic resonance imaging (DWI) technique enables quantification of water mobility for probing microstructural properties of biological tissue and has become an effective tool for collecting information about the underlying pathology of cancerous tissue. Measurements using multiple b-values have indicated biexponential signal attenuation, ascribed to “fast” (high ADC) and “slow” (low ADC) diffusion components. In this empirical study, we investigate the properties of the diffusion time (Δ)-dependent components of the diffusion-weighted (DW) signal in a constant b-value experiment. A xenograft gliobastoma mouse was imaged using Δ = 11 ms, 20 ms, 40 ms, 60 ms, and b = 500–4000 s/mm(2) in intervals of 500 s/mm(2). Data were corrected for EPI distortions, and the Δ-dependence on the DW-signal was measured within three regions of interest [intermediate- and high-density tumor regions and normal-appearing brain (NAB) tissue regions]. In this study, we verify the assumption that the slow decaying component of the DW-signal is non-Gaussian and dependent on Δ, consistent with restricted diffusion of the intracellular space. As the DW-signal is a function of Δ and is specific to restricted diffusion, manipulating Δ at constant b-value (cb) provides a complementary and direct approach for separating the restricted from the hindered diffusion component. We found that Δ-dependence is specific to the tumor tissue signal. Based on an extended biexponential model, we verified the interpretation of the diffusion time-dependent contrast and successfully estimated the intracellular restricted ADC, signal volume fraction, and cell size within each ROI.
format Online
Article
Text
id pubmed-4970563
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-49705632016-08-16 Demonstration of Non-Gaussian Restricted Diffusion in Tumor Cells Using Diffusion Time-Dependent Diffusion-Weighted Magnetic Resonance Imaging Contrast Hope, Tuva R. White, Nathan S. Kuperman, Joshua Chao, Ying Yamin, Ghiam Bartch, Hauke Schenker-Ahmed, Natalie M. Rakow-Penner, Rebecca Bussell, Robert Nomura, Natsuko Kesari, Santosh Bjørnerud, Atle Dale, Anders M. Front Oncol Oncology The diffusion-weighted magnetic resonance imaging (DWI) technique enables quantification of water mobility for probing microstructural properties of biological tissue and has become an effective tool for collecting information about the underlying pathology of cancerous tissue. Measurements using multiple b-values have indicated biexponential signal attenuation, ascribed to “fast” (high ADC) and “slow” (low ADC) diffusion components. In this empirical study, we investigate the properties of the diffusion time (Δ)-dependent components of the diffusion-weighted (DW) signal in a constant b-value experiment. A xenograft gliobastoma mouse was imaged using Δ = 11 ms, 20 ms, 40 ms, 60 ms, and b = 500–4000 s/mm(2) in intervals of 500 s/mm(2). Data were corrected for EPI distortions, and the Δ-dependence on the DW-signal was measured within three regions of interest [intermediate- and high-density tumor regions and normal-appearing brain (NAB) tissue regions]. In this study, we verify the assumption that the slow decaying component of the DW-signal is non-Gaussian and dependent on Δ, consistent with restricted diffusion of the intracellular space. As the DW-signal is a function of Δ and is specific to restricted diffusion, manipulating Δ at constant b-value (cb) provides a complementary and direct approach for separating the restricted from the hindered diffusion component. We found that Δ-dependence is specific to the tumor tissue signal. Based on an extended biexponential model, we verified the interpretation of the diffusion time-dependent contrast and successfully estimated the intracellular restricted ADC, signal volume fraction, and cell size within each ROI. Frontiers Media S.A. 2016-08-02 /pmc/articles/PMC4970563/ /pubmed/27532028 http://dx.doi.org/10.3389/fonc.2016.00179 Text en Copyright © 2016 Hope, White, Kuperman, Chao, Yamin, Bartch, Schenker-Ahmed, Rakow-Penner, Bussell, Nomura, Kesari, Bjørnerud and Dale. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Hope, Tuva R.
White, Nathan S.
Kuperman, Joshua
Chao, Ying
Yamin, Ghiam
Bartch, Hauke
Schenker-Ahmed, Natalie M.
Rakow-Penner, Rebecca
Bussell, Robert
Nomura, Natsuko
Kesari, Santosh
Bjørnerud, Atle
Dale, Anders M.
Demonstration of Non-Gaussian Restricted Diffusion in Tumor Cells Using Diffusion Time-Dependent Diffusion-Weighted Magnetic Resonance Imaging Contrast
title Demonstration of Non-Gaussian Restricted Diffusion in Tumor Cells Using Diffusion Time-Dependent Diffusion-Weighted Magnetic Resonance Imaging Contrast
title_full Demonstration of Non-Gaussian Restricted Diffusion in Tumor Cells Using Diffusion Time-Dependent Diffusion-Weighted Magnetic Resonance Imaging Contrast
title_fullStr Demonstration of Non-Gaussian Restricted Diffusion in Tumor Cells Using Diffusion Time-Dependent Diffusion-Weighted Magnetic Resonance Imaging Contrast
title_full_unstemmed Demonstration of Non-Gaussian Restricted Diffusion in Tumor Cells Using Diffusion Time-Dependent Diffusion-Weighted Magnetic Resonance Imaging Contrast
title_short Demonstration of Non-Gaussian Restricted Diffusion in Tumor Cells Using Diffusion Time-Dependent Diffusion-Weighted Magnetic Resonance Imaging Contrast
title_sort demonstration of non-gaussian restricted diffusion in tumor cells using diffusion time-dependent diffusion-weighted magnetic resonance imaging contrast
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970563/
https://www.ncbi.nlm.nih.gov/pubmed/27532028
http://dx.doi.org/10.3389/fonc.2016.00179
work_keys_str_mv AT hopetuvar demonstrationofnongaussianrestricteddiffusionintumorcellsusingdiffusiontimedependentdiffusionweightedmagneticresonanceimagingcontrast
AT whitenathans demonstrationofnongaussianrestricteddiffusionintumorcellsusingdiffusiontimedependentdiffusionweightedmagneticresonanceimagingcontrast
AT kupermanjoshua demonstrationofnongaussianrestricteddiffusionintumorcellsusingdiffusiontimedependentdiffusionweightedmagneticresonanceimagingcontrast
AT chaoying demonstrationofnongaussianrestricteddiffusionintumorcellsusingdiffusiontimedependentdiffusionweightedmagneticresonanceimagingcontrast
AT yaminghiam demonstrationofnongaussianrestricteddiffusionintumorcellsusingdiffusiontimedependentdiffusionweightedmagneticresonanceimagingcontrast
AT bartchhauke demonstrationofnongaussianrestricteddiffusionintumorcellsusingdiffusiontimedependentdiffusionweightedmagneticresonanceimagingcontrast
AT schenkerahmednataliem demonstrationofnongaussianrestricteddiffusionintumorcellsusingdiffusiontimedependentdiffusionweightedmagneticresonanceimagingcontrast
AT rakowpennerrebecca demonstrationofnongaussianrestricteddiffusionintumorcellsusingdiffusiontimedependentdiffusionweightedmagneticresonanceimagingcontrast
AT bussellrobert demonstrationofnongaussianrestricteddiffusionintumorcellsusingdiffusiontimedependentdiffusionweightedmagneticresonanceimagingcontrast
AT nomuranatsuko demonstrationofnongaussianrestricteddiffusionintumorcellsusingdiffusiontimedependentdiffusionweightedmagneticresonanceimagingcontrast
AT kesarisantosh demonstrationofnongaussianrestricteddiffusionintumorcellsusingdiffusiontimedependentdiffusionweightedmagneticresonanceimagingcontrast
AT bjørnerudatle demonstrationofnongaussianrestricteddiffusionintumorcellsusingdiffusiontimedependentdiffusionweightedmagneticresonanceimagingcontrast
AT daleandersm demonstrationofnongaussianrestricteddiffusionintumorcellsusingdiffusiontimedependentdiffusionweightedmagneticresonanceimagingcontrast