Cargando…
Veterinary Medicine Needs New Green Antimicrobial Drugs
Given that: (1) the worldwide consumption of antimicrobial drugs (AMDs) used in food-producing animals will increase over the coming decades; (2) the prudent use of AMDs will not suffice to stem the rise in human antimicrobial resistance (AMR) of animal origin; (3) alternatives to AMD use are not av...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4971058/ https://www.ncbi.nlm.nih.gov/pubmed/27536285 http://dx.doi.org/10.3389/fmicb.2016.01196 |
_version_ | 1782446042974781440 |
---|---|
author | Toutain, Pierre-Louis Ferran, Aude A. Bousquet-Melou, Alain Pelligand, Ludovic Lees, Peter |
author_facet | Toutain, Pierre-Louis Ferran, Aude A. Bousquet-Melou, Alain Pelligand, Ludovic Lees, Peter |
author_sort | Toutain, Pierre-Louis |
collection | PubMed |
description | Given that: (1) the worldwide consumption of antimicrobial drugs (AMDs) used in food-producing animals will increase over the coming decades; (2) the prudent use of AMDs will not suffice to stem the rise in human antimicrobial resistance (AMR) of animal origin; (3) alternatives to AMD use are not available or not implementable, there is an urgent need to develop novel AMDs for food-producing animals. This is not for animal health reasons, but to break the link between human and animal resistomes. In this review we establish the feasibility of developing for veterinary medicine new AMDs, termed “green antibiotics,” having minimal ecological impact on the animal commensal and environmental microbiomes. We first explain why animal and human commensal microbiota comprise a “turnstile” exchange, between the human and animal resistomes. We then outline the ideal physico-chemical, pharmacokinetic, and pharmacodynamic properties of a veterinary green antibiotic and conclude that they can be developed through a rational screening of currently used AMD classes. The ideal drug will be hydrophilic, of relatively low potency, slow clearance and small volume of distribution. It should be eliminated principally by the kidney as inactive metabolite(s). For oral administration, bioavailability can be enhanced by developing lipophilic pro-drugs. For parenteral administration, slow-release formulations of existing eco-friendly AMDs with a short elimination half-life can be developed. These new eco-friendly veterinary AMDs can be developed from currently used drug classes to provide alternative agents to those currently used in veterinary medicine and mitigate animal contributions to the human AMR problem. |
format | Online Article Text |
id | pubmed-4971058 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-49710582016-08-17 Veterinary Medicine Needs New Green Antimicrobial Drugs Toutain, Pierre-Louis Ferran, Aude A. Bousquet-Melou, Alain Pelligand, Ludovic Lees, Peter Front Microbiol Microbiology Given that: (1) the worldwide consumption of antimicrobial drugs (AMDs) used in food-producing animals will increase over the coming decades; (2) the prudent use of AMDs will not suffice to stem the rise in human antimicrobial resistance (AMR) of animal origin; (3) alternatives to AMD use are not available or not implementable, there is an urgent need to develop novel AMDs for food-producing animals. This is not for animal health reasons, but to break the link between human and animal resistomes. In this review we establish the feasibility of developing for veterinary medicine new AMDs, termed “green antibiotics,” having minimal ecological impact on the animal commensal and environmental microbiomes. We first explain why animal and human commensal microbiota comprise a “turnstile” exchange, between the human and animal resistomes. We then outline the ideal physico-chemical, pharmacokinetic, and pharmacodynamic properties of a veterinary green antibiotic and conclude that they can be developed through a rational screening of currently used AMD classes. The ideal drug will be hydrophilic, of relatively low potency, slow clearance and small volume of distribution. It should be eliminated principally by the kidney as inactive metabolite(s). For oral administration, bioavailability can be enhanced by developing lipophilic pro-drugs. For parenteral administration, slow-release formulations of existing eco-friendly AMDs with a short elimination half-life can be developed. These new eco-friendly veterinary AMDs can be developed from currently used drug classes to provide alternative agents to those currently used in veterinary medicine and mitigate animal contributions to the human AMR problem. Frontiers Media S.A. 2016-08-03 /pmc/articles/PMC4971058/ /pubmed/27536285 http://dx.doi.org/10.3389/fmicb.2016.01196 Text en Copyright © 2016 Toutain, Ferran, Bousquet-Melou, Pelligand and Lees. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Toutain, Pierre-Louis Ferran, Aude A. Bousquet-Melou, Alain Pelligand, Ludovic Lees, Peter Veterinary Medicine Needs New Green Antimicrobial Drugs |
title | Veterinary Medicine Needs New Green Antimicrobial Drugs |
title_full | Veterinary Medicine Needs New Green Antimicrobial Drugs |
title_fullStr | Veterinary Medicine Needs New Green Antimicrobial Drugs |
title_full_unstemmed | Veterinary Medicine Needs New Green Antimicrobial Drugs |
title_short | Veterinary Medicine Needs New Green Antimicrobial Drugs |
title_sort | veterinary medicine needs new green antimicrobial drugs |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4971058/ https://www.ncbi.nlm.nih.gov/pubmed/27536285 http://dx.doi.org/10.3389/fmicb.2016.01196 |
work_keys_str_mv | AT toutainpierrelouis veterinarymedicineneedsnewgreenantimicrobialdrugs AT ferranaudea veterinarymedicineneedsnewgreenantimicrobialdrugs AT bousquetmeloualain veterinarymedicineneedsnewgreenantimicrobialdrugs AT pelligandludovic veterinarymedicineneedsnewgreenantimicrobialdrugs AT leespeter veterinarymedicineneedsnewgreenantimicrobialdrugs |