Cargando…
Cry-based infant pathology classification using GMMs
Traditional studies of infant cry signals focus more on non-pathology-based classification of infants. In this paper, we introduce a noninvasive health care system that performs acoustic analysis of unclean noisy infant cry signals to extract and measure certain cry characteristics quantitatively an...
Autores principales: | Farsaie Alaie, Hesam, Abou-Abbas, Lina, Tadj, Chakib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
North-Holland
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4971135/ https://www.ncbi.nlm.nih.gov/pubmed/27524848 http://dx.doi.org/10.1016/j.specom.2015.12.001 |
Ejemplares similares
-
A fully automated approach for baby cry signal segmentation and boundary detection of expiratory and inspiratory episodes
por: Abou-Abbas, Lina, et al.
Publicado: (2017) -
Expiratory and Inspiratory Cries Detection Using Different Signals' Decomposition Techniques
por: Abou-Abbas, Lina, et al.
Publicado: (2017) -
Nonlinear Statistical Analysis of Normal and Pathological Infant Cry Signals in Cepstrum Domain by Multifractal Wavelet Leaders
por: Lahmiri, Salim, et al.
Publicado: (2022) -
Infant Cry Signal Diagnostic System Using Deep Learning and Fused Features
por: Zayed, Yara, et al.
Publicado: (2023) -
Using CCA-Fused Cepstral Features in a Deep Learning-Based Cry Diagnostic System for Detecting an Ensemble of Pathologies in Newborns
por: Khalilzad, Zahra, et al.
Publicado: (2023)