Cargando…

Evolving synergetic interactions

Cooperators forgo their own interests to benefit others. This reduces their fitness and thus cooperators are not likely to spread based on natural selection. Nonetheless, cooperation is widespread on every level of biological organization ranging from bacterial communities to human society. Mathemat...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Bin, Arranz, Jordi, Du, Jinming, Zhou, Da, Traulsen, Arne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4971219/
https://www.ncbi.nlm.nih.gov/pubmed/27466437
http://dx.doi.org/10.1098/rsif.2016.0282
Descripción
Sumario:Cooperators forgo their own interests to benefit others. This reduces their fitness and thus cooperators are not likely to spread based on natural selection. Nonetheless, cooperation is widespread on every level of biological organization ranging from bacterial communities to human society. Mathematical models can help to explain under which circumstances cooperation evolves. Evolutionary game theory is a powerful mathematical tool to depict the interactions between cooperators and defectors. Classical models typically involve either pairwise interactions between individuals or a linear superposition of these interactions. For interactions within groups, however, synergetic effects may arise: their outcome is not just the sum of its parts. This is because the payoffs via a single group interaction can be different from the sum of any collection of two-player interactions. Assuming that all interactions start from pairs, how can such synergetic multiplayer games emerge from simpler pairwise interactions? Here, we present a mathematical model that captures the transition from pairwise interactions to synergetic multiplayer ones. We assume that different social groups have different breaking rates. We show that non-uniform breaking rates do foster the emergence of synergy, even though individuals always interact in pairs. Our work sheds new light on the mechanisms underlying such synergetic interactions.