Cargando…

hiPSC-derived cardiomyocytes from Brugada Syndrome patients without identified mutations do not exhibit clear cellular electrophysiological abnormalities

Brugada syndrome (BrS) is a rare cardiac rhythm disorder associated with sudden cardiac death. Mutations in the sodium channel gene SCN5A are found in ~20% of cases while mutations in other genes collectively account for <5%. In the remaining patients the genetic defect and the underlying pathoge...

Descripción completa

Detalles Bibliográficos
Autores principales: Veerman, Christiaan C., Mengarelli, Isabella, Guan, Kaomei, Stauske, Michael, Barc, Julien, Tan, Hanno L., Wilde, Arthur A. M., Verkerk, Arie O., Bezzina, Connie R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4971529/
https://www.ncbi.nlm.nih.gov/pubmed/27485484
http://dx.doi.org/10.1038/srep30967
Descripción
Sumario:Brugada syndrome (BrS) is a rare cardiac rhythm disorder associated with sudden cardiac death. Mutations in the sodium channel gene SCN5A are found in ~20% of cases while mutations in other genes collectively account for <5%. In the remaining patients the genetic defect and the underlying pathogenic mechanism remain obscure. To provide insight into the mechanism of BrS in individuals without identified mutations, we here studied electrophysiological properties of cardiomyocytes (CMs) generated from human induced pluripotent stem cells (hiPSCs) from 3 BrS patients who tested negative for mutations in the known BrS-associated genes. Patch clamp studies revealed no differences in sodium current (I(Na)) in hiPSC-CMs from the 3 BrS patients compared to 2 unrelated controls. Moreover, action potential upstroke velocity (V(max)), reflecting I(Na), was not different between hiPSC-CMs from the BrS patients and the controls. hiPSC-CMs harboring the BrS-associated SCN5A-1795insD mutation exhibited a reduction in both I(Na) and V(max), demonstrating our ability to detect reduced sodium channel function. hiPSC-CMs from one of the BrS lines demonstrated a mildly reduced action potential duration, however, the transient outward potassium current (I(to)) and the L-type calcium current (I(Ca,L)), both implicated in BrS, were not different compared to the controls. Our findings indicate that ion channel dysfunction, in particular in the cardiac sodium channel, may not be a prerequisite for BrS.