Cargando…
Using Gini coefficient to determining optimal cluster reporting sizes for spatial scan statistics
BACKGROUND: Spatial and space–time scan statistics are widely used in disease surveillance to identify geographical areas of elevated disease risk and for the early detection of disease outbreaks. With a scan statistic, a scanning window of variable location and size moves across the map to evaluate...
Autores principales: | Han, Junhee, Zhu, Li, Kulldorff, Martin, Hostovich, Scott, Stinchcomb, David G., Tatalovich, Zaria, Lewis, Denise Riedel, Feuer, Eric J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4971627/ https://www.ncbi.nlm.nih.gov/pubmed/27488416 http://dx.doi.org/10.1186/s12942-016-0056-6 |
Ejemplares similares
-
Evaluation of the Gini Coefficient in Spatial Scan Statistics for Detecting Irregularly Shaped Clusters
por: Kim, Jiyu, et al.
Publicado: (2017) -
Gumbel based p-value approximations for spatial scan statistics
por: Abrams, Allyson M, et al.
Publicado: (2010) -
Optimizing the maximum reported cluster size in the spatial scan statistic for survival data
por: Lee, Sujee, et al.
Publicado: (2021) -
Optimizing the maximum reported cluster size for the multinomial-based spatial scan statistic
por: Moon, Jisu, et al.
Publicado: (2023) -
A flexibly shaped spatial scan statistic for detecting clusters
por: Tango, Toshiro, et al.
Publicado: (2005)