Cargando…

The ancestral chromosomes of Dromiciops gliroides (Microbiotheridae), and its bearings on the karyotypic evolution of American marsupials

BACKGROUND: The low-numbered 14-chromosome karyotype of marsupials has falsified the fusion hypothesis claiming ancestrality from a 22-chromosome karyotype. Since the 14-chromosome condition of the relict Dromiciops gliroides is reminecent of ancestrality, its interstitial traces of past putative fu...

Descripción completa

Detalles Bibliográficos
Autores principales: Suárez-Villota, Elkin Y., Haro, Ronie E., Vargas, Rodrigo A., Gallardo, Milton H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4971695/
https://www.ncbi.nlm.nih.gov/pubmed/27489568
http://dx.doi.org/10.1186/s13039-016-0270-8
Descripción
Sumario:BACKGROUND: The low-numbered 14-chromosome karyotype of marsupials has falsified the fusion hypothesis claiming ancestrality from a 22-chromosome karyotype. Since the 14-chromosome condition of the relict Dromiciops gliroides is reminecent of ancestrality, its interstitial traces of past putative fusions and heterochromatin banding patterns were studied and added to available marsupials’ cytogenetic data. Fluorescent in situ hybridization (FISH) and self-genomic in situ hybridization (self-GISH) were used to detect telomeric and repetitive sequences, respectively. These were complemented with C-, fluorescent banding, and centromere immunodetection over mitotic spreads. The presence of interstitial telomeric sequences (ITS) and diploid numbers were reconstructed and mapped onto the marsupial phylogenetic tree. RESULTS: No interstitial, fluorescent signals, but clearly stained telomeric regions were detected by FISH and self-GISH. Heterochromatin distribution was sparse in the telomeric/subtelomeric regions of large submetacentric chromosomes. Large AT-rich blocks were detected in the long arm of four submetacentrics and CG-rich block in the telomeric regions of all chromosomes. The ancestral reconstructions both ITS presence and diploid numbers suggested that ITS are unrelated to fusion events. CONCLUSION: Although the lack of interstitial signals in D. gliroides’ karyotype does not prove absence of past fusions, our data suggests its non-rearranged plesiomorphic condition. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13039-016-0270-8) contains supplementary material, which is available to authorized users.