Cargando…
Analysis of neural crest–derived clones reveals novel aspects of facial development
Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4972470/ https://www.ncbi.nlm.nih.gov/pubmed/27493992 http://dx.doi.org/10.1126/sciadv.1600060 |
_version_ | 1782446249515941888 |
---|---|
author | Kaucka, Marketa Ivashkin, Evgeny Gyllborg, Daniel Zikmund, Tomas Tesarova, Marketa Kaiser, Jozef Xie, Meng Petersen, Julian Pachnis, Vassilis Nicolis, Silvia K. Yu, Tian Sharpe, Paul Arenas, Ernest Brismar, Hjalmar Blom, Hans Clevers, Hans Suter, Ueli Chagin, Andrei S. Fried, Kaj Hellander, Andreas Adameyko, Igor |
author_facet | Kaucka, Marketa Ivashkin, Evgeny Gyllborg, Daniel Zikmund, Tomas Tesarova, Marketa Kaiser, Jozef Xie, Meng Petersen, Julian Pachnis, Vassilis Nicolis, Silvia K. Yu, Tian Sharpe, Paul Arenas, Ernest Brismar, Hjalmar Blom, Hans Clevers, Hans Suter, Ueli Chagin, Andrei S. Fried, Kaj Hellander, Andreas Adameyko, Igor |
author_sort | Kaucka, Marketa |
collection | PubMed |
description | Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth. |
format | Online Article Text |
id | pubmed-4972470 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49724702016-08-04 Analysis of neural crest–derived clones reveals novel aspects of facial development Kaucka, Marketa Ivashkin, Evgeny Gyllborg, Daniel Zikmund, Tomas Tesarova, Marketa Kaiser, Jozef Xie, Meng Petersen, Julian Pachnis, Vassilis Nicolis, Silvia K. Yu, Tian Sharpe, Paul Arenas, Ernest Brismar, Hjalmar Blom, Hans Clevers, Hans Suter, Ueli Chagin, Andrei S. Fried, Kaj Hellander, Andreas Adameyko, Igor Sci Adv Research Articles Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth. American Association for the Advancement of Science 2016-08-03 /pmc/articles/PMC4972470/ /pubmed/27493992 http://dx.doi.org/10.1126/sciadv.1600060 Text en Copyright © 2016, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Kaucka, Marketa Ivashkin, Evgeny Gyllborg, Daniel Zikmund, Tomas Tesarova, Marketa Kaiser, Jozef Xie, Meng Petersen, Julian Pachnis, Vassilis Nicolis, Silvia K. Yu, Tian Sharpe, Paul Arenas, Ernest Brismar, Hjalmar Blom, Hans Clevers, Hans Suter, Ueli Chagin, Andrei S. Fried, Kaj Hellander, Andreas Adameyko, Igor Analysis of neural crest–derived clones reveals novel aspects of facial development |
title | Analysis of neural crest–derived clones reveals novel aspects of facial development |
title_full | Analysis of neural crest–derived clones reveals novel aspects of facial development |
title_fullStr | Analysis of neural crest–derived clones reveals novel aspects of facial development |
title_full_unstemmed | Analysis of neural crest–derived clones reveals novel aspects of facial development |
title_short | Analysis of neural crest–derived clones reveals novel aspects of facial development |
title_sort | analysis of neural crest–derived clones reveals novel aspects of facial development |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4972470/ https://www.ncbi.nlm.nih.gov/pubmed/27493992 http://dx.doi.org/10.1126/sciadv.1600060 |
work_keys_str_mv | AT kauckamarketa analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT ivashkinevgeny analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT gyllborgdaniel analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT zikmundtomas analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT tesarovamarketa analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT kaiserjozef analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT xiemeng analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT petersenjulian analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT pachnisvassilis analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT nicolissilviak analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT yutian analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT sharpepaul analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT arenasernest analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT brismarhjalmar analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT blomhans analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT clevershans analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT suterueli analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT chaginandreis analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT friedkaj analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT hellanderandreas analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment AT adameykoigor analysisofneuralcrestderivedclonesrevealsnovelaspectsoffacialdevelopment |