Cargando…
Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle
Heat stress is associated with death and other maladaptions including muscle dysfunction and impaired growth across species. Despite this common observation, the molecular effects leading to these pathologic changes remain unclear. The purpose of this study was to determine the extent to which heat...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4972518/ https://www.ncbi.nlm.nih.gov/pubmed/27583280 http://dx.doi.org/10.4161/temp.28844 |
_version_ | 1782446256747970560 |
---|---|
author | Montilla, Sandra I Rosado Johnson, Theresa P Pearce, Sarah C Gardan-Salmon, Delphine Gabler, Nicholas K Ross, Jason W Rhoads, Robert P Baumgard, Lance H Lonergan, Steven M Selsby, Joshua T |
author_facet | Montilla, Sandra I Rosado Johnson, Theresa P Pearce, Sarah C Gardan-Salmon, Delphine Gabler, Nicholas K Ross, Jason W Rhoads, Robert P Baumgard, Lance H Lonergan, Steven M Selsby, Joshua T |
author_sort | Montilla, Sandra I Rosado |
collection | PubMed |
description | Heat stress is associated with death and other maladaptions including muscle dysfunction and impaired growth across species. Despite this common observation, the molecular effects leading to these pathologic changes remain unclear. The purpose of this study was to determine the extent to which heat stress disrupted redox balance and initiated an inflammatory response in oxidative and glycolytic skeletal muscle. Female pigs (5–6/group) were subjected to thermoneutral (20 °C) or heat stress (35 °C) conditions for 1 or 3 days and the semitendinosus removed and dissected into red (STR) and white (STW) portions. After 1 day of heat stress, relative abundance of proteins modified by malondialdehyde, a measure of oxidative damage, was increased 2.5-fold (P < 0.05) compared with thermoneutral in the STR but not the STW, before returning to thermoneutral conditions following 3 days of heat stress. This corresponded with increased catalase and superoxide dismutase-1 gene expression (P < 0.05) and superoxide dismutase-1 protein abundance (P < 0.05) in the STR but not the STW. In the STR catalase and total superoxide dismutase activity were increased by ~30% and ~130%, respectively (P < 0.05), after 1 day of heat stress and returned to thermoneutral levels by day 3. One or 3 days of heat stress did not increase inflammatory signaling through the NF-κB pathway in the STR or STW. These data suggest that oxidative muscle is more susceptible to heat stress-mediated changes in redox balance than glycolytic muscle during chronic heat stress. |
format | Online Article Text |
id | pubmed-4972518 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-49725182016-08-31 Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle Montilla, Sandra I Rosado Johnson, Theresa P Pearce, Sarah C Gardan-Salmon, Delphine Gabler, Nicholas K Ross, Jason W Rhoads, Robert P Baumgard, Lance H Lonergan, Steven M Selsby, Joshua T Temperature (Austin) Research Paper Heat stress is associated with death and other maladaptions including muscle dysfunction and impaired growth across species. Despite this common observation, the molecular effects leading to these pathologic changes remain unclear. The purpose of this study was to determine the extent to which heat stress disrupted redox balance and initiated an inflammatory response in oxidative and glycolytic skeletal muscle. Female pigs (5–6/group) were subjected to thermoneutral (20 °C) or heat stress (35 °C) conditions for 1 or 3 days and the semitendinosus removed and dissected into red (STR) and white (STW) portions. After 1 day of heat stress, relative abundance of proteins modified by malondialdehyde, a measure of oxidative damage, was increased 2.5-fold (P < 0.05) compared with thermoneutral in the STR but not the STW, before returning to thermoneutral conditions following 3 days of heat stress. This corresponded with increased catalase and superoxide dismutase-1 gene expression (P < 0.05) and superoxide dismutase-1 protein abundance (P < 0.05) in the STR but not the STW. In the STR catalase and total superoxide dismutase activity were increased by ~30% and ~130%, respectively (P < 0.05), after 1 day of heat stress and returned to thermoneutral levels by day 3. One or 3 days of heat stress did not increase inflammatory signaling through the NF-κB pathway in the STR or STW. These data suggest that oxidative muscle is more susceptible to heat stress-mediated changes in redox balance than glycolytic muscle during chronic heat stress. Taylor & Francis 2014-04-17 /pmc/articles/PMC4972518/ /pubmed/27583280 http://dx.doi.org/10.4161/temp.28844 Text en Copyright © 2014 Landes Bioscience http://creativecommons.org/licenses/by-nc/3.0/ This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
spellingShingle | Research Paper Montilla, Sandra I Rosado Johnson, Theresa P Pearce, Sarah C Gardan-Salmon, Delphine Gabler, Nicholas K Ross, Jason W Rhoads, Robert P Baumgard, Lance H Lonergan, Steven M Selsby, Joshua T Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle |
title | Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle |
title_full | Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle |
title_fullStr | Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle |
title_full_unstemmed | Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle |
title_short | Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle |
title_sort | heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4972518/ https://www.ncbi.nlm.nih.gov/pubmed/27583280 http://dx.doi.org/10.4161/temp.28844 |
work_keys_str_mv | AT montillasandrairosado heatstresscausesoxidativestressbutnotinflammatorysignalinginporcineskeletalmuscle AT johnsontheresap heatstresscausesoxidativestressbutnotinflammatorysignalinginporcineskeletalmuscle AT pearcesarahc heatstresscausesoxidativestressbutnotinflammatorysignalinginporcineskeletalmuscle AT gardansalmondelphine heatstresscausesoxidativestressbutnotinflammatorysignalinginporcineskeletalmuscle AT gablernicholask heatstresscausesoxidativestressbutnotinflammatorysignalinginporcineskeletalmuscle AT rossjasonw heatstresscausesoxidativestressbutnotinflammatorysignalinginporcineskeletalmuscle AT rhoadsrobertp heatstresscausesoxidativestressbutnotinflammatorysignalinginporcineskeletalmuscle AT baumgardlanceh heatstresscausesoxidativestressbutnotinflammatorysignalinginporcineskeletalmuscle AT lonerganstevenm heatstresscausesoxidativestressbutnotinflammatorysignalinginporcineskeletalmuscle AT selsbyjoshuat heatstresscausesoxidativestressbutnotinflammatorysignalinginporcineskeletalmuscle |