Cargando…

Neuronal specification exploits the inherent flexibility of cell-cycle gap phases

Starting from pluripotent stem cells that virtually proliferate indefinitely, the orderly emergence during organogenesis of lineage-restricted cell types exhibiting a decreased proliferative capacity concurrently with an increasing range of differentiation traits implies the occurrence of a stringen...

Descripción completa

Detalles Bibliográficos
Autor principal: Pfeuty, Benjamin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973608/
https://www.ncbi.nlm.nih.gov/pubmed/27606329
http://dx.doi.org/10.1080/23262133.2015.1095694
Descripción
Sumario:Starting from pluripotent stem cells that virtually proliferate indefinitely, the orderly emergence during organogenesis of lineage-restricted cell types exhibiting a decreased proliferative capacity concurrently with an increasing range of differentiation traits implies the occurrence of a stringent spatiotemporal coupling between cell-cycle progression and cell differentiation. A recent computational modeling study has explored in the context of neurogenesis whether and how the peculiar pattern of connections among the proneural Neurog2 factor, the Hes1 Notch effector and antagonistically-acting G1-phase regulators would be instrumental in this event. This study highlighted that the strong opposition to G1/S transit imposed by accumulating Neurog2 and CKI enables a sensitive control of G1-phase lengthening and terminal differentiation to occur concomitantly with late-G1 exit. Contrastingly, Hes1 promotes early-G1 cell-cycle arrest and its cell-autonomous oscillations combined with a lateral inhibition mechanism help maintain a labile proliferation state in dynamic balance with diverse cell-fate outputs, thereby, offering cells the choice to either keep self-renewing or differentiate into distinct cell types. These results, discussed in connection with Ascl1-dependent neural differentiation, suggest that developmental fate decisions exploit the inherent flexibility of cell-cycle gap phases to generate diversity by selecting subtly-differing patterns of connections among components of the cell-cycle machinery and differentiation pathways.