Cargando…
Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice
BACKGROUND: Aging of skin is associated with environmental factors such as ultraviolet rays, air pollution, gravity, and genetic factors, all of which can lead to wrinkling of skin. Previous reports suggest that the wound repair is impaired by the aging process and strategies to manipulate the age-r...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973718/ https://www.ncbi.nlm.nih.gov/pubmed/27536082 http://dx.doi.org/10.2147/CIA.S107734 |
_version_ | 1782446442026106880 |
---|---|
author | Lee, Hyunji Hong, Youngeun Kwon, So Hee Park, Jongsun Park, Jisoo |
author_facet | Lee, Hyunji Hong, Youngeun Kwon, So Hee Park, Jongsun Park, Jisoo |
author_sort | Lee, Hyunji |
collection | PubMed |
description | BACKGROUND: Aging of skin is associated with environmental factors such as ultraviolet rays, air pollution, gravity, and genetic factors, all of which can lead to wrinkling of skin. Previous reports suggest that the wound repair is impaired by the aging process and strategies to manipulate the age-related wound healing are necessary in order to stimulate repair. OBJECTIVE: Several traditional plant extracts are well-known for their properties of skin protection and care. Piper cambodianum P. Fourn. (PPF), a member of Piperacecae, is a plant found in Vietnam that might have therapeutic properties. Therefore, the effects of PPF stem and leaf extract on aging process were investigated in vitro and in vivo. METHODS: PPF extract dissolved in methanol was investigated using Western blotting, real-time quantitative reverse transcription-polymerase chain reaction, flow cytometry, and cell wound-healing assays. We assessed the anti-aging effect of PPF in mouse using the wound-healing assay. The results were analyzed by Student’s unpaired t-test; *P<0.05 and **P<0.01 were considered to indicate significant and highly significant values, respectively, compared with corresponding controls. RESULTS: PPF treatment demonstrated in vitro and in vivo anti-aging activity. Western blot analysis of PPF-treated normal human dermal fibroblast cells showed a dose-dependent increase in the expression of extracellular matrix genes such as collagen and elastin, but decreased expression of the aging gene matrix metalloproteinase-3. Quantitative polymerase chain reaction showed that PPF-treated cells displayed dose-dependent increase in messenger RNA expression levels of collagen, elastin, and hyaluronan synthase-2 and decreased expression levels of matrix metalloproteinase-1 aging gene. PPF treatment led to decreased production of reactive oxygen species in cells subjected to ultraviolet irradiation. Furthermore, PPF extract showed positive wound-healing effects in mice. CONCLUSION: This study demonstrated the anti-aging and wound-healing effects of PPF extract. Therefore, PPF extract represents a promising new therapeutic agent for anti-aging and wound-healing treatments. |
format | Online Article Text |
id | pubmed-4973718 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-49737182016-08-17 Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice Lee, Hyunji Hong, Youngeun Kwon, So Hee Park, Jongsun Park, Jisoo Clin Interv Aging Original Research BACKGROUND: Aging of skin is associated with environmental factors such as ultraviolet rays, air pollution, gravity, and genetic factors, all of which can lead to wrinkling of skin. Previous reports suggest that the wound repair is impaired by the aging process and strategies to manipulate the age-related wound healing are necessary in order to stimulate repair. OBJECTIVE: Several traditional plant extracts are well-known for their properties of skin protection and care. Piper cambodianum P. Fourn. (PPF), a member of Piperacecae, is a plant found in Vietnam that might have therapeutic properties. Therefore, the effects of PPF stem and leaf extract on aging process were investigated in vitro and in vivo. METHODS: PPF extract dissolved in methanol was investigated using Western blotting, real-time quantitative reverse transcription-polymerase chain reaction, flow cytometry, and cell wound-healing assays. We assessed the anti-aging effect of PPF in mouse using the wound-healing assay. The results were analyzed by Student’s unpaired t-test; *P<0.05 and **P<0.01 were considered to indicate significant and highly significant values, respectively, compared with corresponding controls. RESULTS: PPF treatment demonstrated in vitro and in vivo anti-aging activity. Western blot analysis of PPF-treated normal human dermal fibroblast cells showed a dose-dependent increase in the expression of extracellular matrix genes such as collagen and elastin, but decreased expression of the aging gene matrix metalloproteinase-3. Quantitative polymerase chain reaction showed that PPF-treated cells displayed dose-dependent increase in messenger RNA expression levels of collagen, elastin, and hyaluronan synthase-2 and decreased expression levels of matrix metalloproteinase-1 aging gene. PPF treatment led to decreased production of reactive oxygen species in cells subjected to ultraviolet irradiation. Furthermore, PPF extract showed positive wound-healing effects in mice. CONCLUSION: This study demonstrated the anti-aging and wound-healing effects of PPF extract. Therefore, PPF extract represents a promising new therapeutic agent for anti-aging and wound-healing treatments. Dove Medical Press 2016-07-29 /pmc/articles/PMC4973718/ /pubmed/27536082 http://dx.doi.org/10.2147/CIA.S107734 Text en © 2016 Lee et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Lee, Hyunji Hong, Youngeun Kwon, So Hee Park, Jongsun Park, Jisoo Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice |
title | Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice |
title_full | Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice |
title_fullStr | Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice |
title_full_unstemmed | Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice |
title_short | Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice |
title_sort | anti-aging effects of piper cambodianum p. fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973718/ https://www.ncbi.nlm.nih.gov/pubmed/27536082 http://dx.doi.org/10.2147/CIA.S107734 |
work_keys_str_mv | AT leehyunji antiagingeffectsofpipercambodianumpfournextractonnormalhumandermalfibroblastcellsandawoundhealingmodelinmice AT hongyoungeun antiagingeffectsofpipercambodianumpfournextractonnormalhumandermalfibroblastcellsandawoundhealingmodelinmice AT kwonsohee antiagingeffectsofpipercambodianumpfournextractonnormalhumandermalfibroblastcellsandawoundhealingmodelinmice AT parkjongsun antiagingeffectsofpipercambodianumpfournextractonnormalhumandermalfibroblastcellsandawoundhealingmodelinmice AT parkjisoo antiagingeffectsofpipercambodianumpfournextractonnormalhumandermalfibroblastcellsandawoundhealingmodelinmice |