Cargando…
Mapping of quantitative trait loci for root hair length in wheat identifies loci that co-locate with loci for yield components
Root hairs are fast growing, ephemeral tubular extensions of the root epidermis. They arise in the unsuberized maturation zone of the root, effectively increasing the root surface area in the region over which nutrient and water uptake occur. Variation in root hair length (RHL) between varieties has...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973729/ https://www.ncbi.nlm.nih.gov/pubmed/27315832 http://dx.doi.org/10.1093/jxb/erw228 |
_version_ | 1782446444509134848 |
---|---|
author | Horn, R. Wingen, L. U. Snape, J. W. Dolan, L. |
author_facet | Horn, R. Wingen, L. U. Snape, J. W. Dolan, L. |
author_sort | Horn, R. |
collection | PubMed |
description | Root hairs are fast growing, ephemeral tubular extensions of the root epidermis. They arise in the unsuberized maturation zone of the root, effectively increasing the root surface area in the region over which nutrient and water uptake occur. Variation in root hair length (RHL) between varieties has been shown to be genetically determined, and could, therefore, have consequences for nutrient capture and yield potential in crops. We describe the development of a medium-to-high throughput screening method for assessing RHL in wheat at the seedling stage. This method was used to screen a number of wheat mapping population parental lines for variation in RHL. Parents of two populations derived from inter-varietal crosses differed for RHL: Spark vs Rialto and Charger vs Badger. We identified quantitative trait loci (QTLs) for RHL in the populations derived from these crosses. In Spark × Rialto, QTLs on chromosomes 1A, 2A and 6A were associated with variation in RHL, whilst in Charger × Badger, a QTL for RHL was identified on 2BL. The QTLs on 2A and 6A co-localized with previously described QTLs for yield components. Longer root hairs may confer an advantage by exploiting limiting mineral and water resources. This first QTL analysis of root hair length in wheat identifies loci that could usefully be further investigated for their role in tolerance to limiting conditions. |
format | Online Article Text |
id | pubmed-4973729 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-49737292016-08-05 Mapping of quantitative trait loci for root hair length in wheat identifies loci that co-locate with loci for yield components Horn, R. Wingen, L. U. Snape, J. W. Dolan, L. J Exp Bot Research Paper Root hairs are fast growing, ephemeral tubular extensions of the root epidermis. They arise in the unsuberized maturation zone of the root, effectively increasing the root surface area in the region over which nutrient and water uptake occur. Variation in root hair length (RHL) between varieties has been shown to be genetically determined, and could, therefore, have consequences for nutrient capture and yield potential in crops. We describe the development of a medium-to-high throughput screening method for assessing RHL in wheat at the seedling stage. This method was used to screen a number of wheat mapping population parental lines for variation in RHL. Parents of two populations derived from inter-varietal crosses differed for RHL: Spark vs Rialto and Charger vs Badger. We identified quantitative trait loci (QTLs) for RHL in the populations derived from these crosses. In Spark × Rialto, QTLs on chromosomes 1A, 2A and 6A were associated with variation in RHL, whilst in Charger × Badger, a QTL for RHL was identified on 2BL. The QTLs on 2A and 6A co-localized with previously described QTLs for yield components. Longer root hairs may confer an advantage by exploiting limiting mineral and water resources. This first QTL analysis of root hair length in wheat identifies loci that could usefully be further investigated for their role in tolerance to limiting conditions. Oxford University Press 2016-08 2016-06-16 /pmc/articles/PMC4973729/ /pubmed/27315832 http://dx.doi.org/10.1093/jxb/erw228 Text en © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Horn, R. Wingen, L. U. Snape, J. W. Dolan, L. Mapping of quantitative trait loci for root hair length in wheat identifies loci that co-locate with loci for yield components |
title | Mapping of quantitative trait loci for root hair length in wheat identifies loci that co-locate with loci for yield components |
title_full | Mapping of quantitative trait loci for root hair length in wheat identifies loci that co-locate with loci for yield components |
title_fullStr | Mapping of quantitative trait loci for root hair length in wheat identifies loci that co-locate with loci for yield components |
title_full_unstemmed | Mapping of quantitative trait loci for root hair length in wheat identifies loci that co-locate with loci for yield components |
title_short | Mapping of quantitative trait loci for root hair length in wheat identifies loci that co-locate with loci for yield components |
title_sort | mapping of quantitative trait loci for root hair length in wheat identifies loci that co-locate with loci for yield components |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973729/ https://www.ncbi.nlm.nih.gov/pubmed/27315832 http://dx.doi.org/10.1093/jxb/erw228 |
work_keys_str_mv | AT hornr mappingofquantitativetraitlociforroothairlengthinwheatidentifieslocithatcolocatewithlociforyieldcomponents AT wingenlu mappingofquantitativetraitlociforroothairlengthinwheatidentifieslocithatcolocatewithlociforyieldcomponents AT snapejw mappingofquantitativetraitlociforroothairlengthinwheatidentifieslocithatcolocatewithlociforyieldcomponents AT dolanl mappingofquantitativetraitlociforroothairlengthinwheatidentifieslocithatcolocatewithlociforyieldcomponents |