Cargando…
E2F1 Hinders Skin Wound Healing by Repressing Vascular Endothelial Growth Factor (VEGF) Expression, Neovascularization, and Macrophage Recruitment
BACKGROUND: Refractory surface of wound and dermal chronic ulcer are largely attributed to poor neovascularization. We have previously shown that E2F1 suppresses VEGF expression in the ischemic heart, and that genetic deletion of E2F1 leads to better cardiac recovery. However, whether E2F1 has a rol...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973919/ https://www.ncbi.nlm.nih.gov/pubmed/27490344 http://dx.doi.org/10.1371/journal.pone.0160411 |
Sumario: | BACKGROUND: Refractory surface of wound and dermal chronic ulcer are largely attributed to poor neovascularization. We have previously shown that E2F1 suppresses VEGF expression in the ischemic heart, and that genetic deletion of E2F1 leads to better cardiac recovery. However, whether E2F1 has a role in dermal wound healing is currently not known. METHODS AND RESULTS: Skin wounds were surgically induced in E2F1-null (E2F1(–/–)) mice and WT littermates. E2F1(–/–) displayed an accelerated wound healing including wound closure, dermal thickening and collagen deposition, which was associated with an increased endothelial cell proliferation and greater vessel density in the border zone of the wound. Furthermore, more macrophages were recruited to the skin lesions and the level of VEGF expression was markedly higher in E2F1(–/–) than in WT mice. CONCLUSIONS: E2F1 hinders skin wound healing by suppressing VEGF expression, neovascularization, and macrophage recruitment. Strategies that target E2F1 may enhance wound healing. |
---|