Cargando…
Facile fabrication of large-grain CH(3)NH(3)PbI(3−x)Br(x) films for high-efficiency solar cells via CH(3)NH(3)Br-selective Ostwald ripening
Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974626/ https://www.ncbi.nlm.nih.gov/pubmed/27477212 http://dx.doi.org/10.1038/ncomms12305 |
Sumario: | Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication of high-efficiency PSCs based on compact, large-grain, pinhole-free CH(3)NH(3)PbI(3−x)Br(x) (MAPbI(3−x)Br(x)) thin films with high reproducibility. A simple methylammonium bromide (MABr) treatment via spin-coating with a proper MABr concentration converts MAPbI(3) thin films with different initial film qualities (for example, grain size and pinholes) to high-quality MAPbI(3−x)Br(x) thin films following an Ostwald ripening process, which is strongly affected by MABr concentration and is ineffective when replacing MABr with methylammonium iodide. A higher MABr concentration enhances I–Br anion exchange reaction, yielding poorer device performance. This MABr-selective Ostwald ripening process improves cell efficiency but also enhances device stability and thus represents a simple, promising strategy for further improving PSC performance with higher reproducibility and reliability. |
---|