Cargando…

Microbial production and characterization of poly-3-hydroxybutyrate by Neptunomonas antarctica

Considering the industrial interest of biodegradable polymer poly-3-hydroxybutyrate (PHB), the marine bacteria Neptunomonas antarctica was studied for its ability to accumulate PHB. The extracted polymer was confirmed to be PHB by nuclear magnetic resonance analysis. In shake flask cultures using na...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xiao-Jie, Zhang, Jie, Hong, Peng-Hui, Li, Zheng-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4975036/
https://www.ncbi.nlm.nih.gov/pubmed/27547584
http://dx.doi.org/10.7717/peerj.2291
Descripción
Sumario:Considering the industrial interest of biodegradable polymer poly-3-hydroxybutyrate (PHB), the marine bacteria Neptunomonas antarctica was studied for its ability to accumulate PHB. The extracted polymer was confirmed to be PHB by nuclear magnetic resonance analysis. In shake flask cultures using natural seawater as medium components, PHB was produced up to 2.12 g/L with a yield of 0.18 g PHB/g fructose. In the presence of artificial seawater, the PHB titer and yield reached 2.13 g/L and 0.13 g PHB/g fructose, respectively. The accumulated polymer gradually decreased when fructose was exhausted, indicating that intracellular PHB was degraded by N. antarctica. The weight-average and number-average molecular weights of PHB produced within natural seawater were 2.4 × 10(5) g/mol and 1.7 × 10(5) g/mol, respectively. Our results highlight the potential of N. antarctica for PHB production with seawater as a nutrient source.